电信科学 ›› 2021, Vol. 37 ›› Issue (5): 113-123.doi: 10.11959/j.issn.1000-0801.2021002

• 研究与开发 • 上一篇    下一篇

一种大规模MIMO系统的联合用户活跃性和信号检测方法

宋晓群, 金明, 贾忠杰   

  1. 宁波大学信息科学与工程学院,浙江 宁波 315211
  • 修回日期:2020-12-22 出版日期:2021-05-20 发布日期:2021-05-01
  • 作者简介:宋晓群(1995− ),女,宁波大学信息科学与工程学院硕士生,主要研究方向为认知无线电、机器学习等
    金明(1981− ),男,博士,宁波大学信息科学与工程学院教授,主要研究方向为认知无线电技术、优化算法、机器学习等
    贾忠杰(1996− ),男,宁波大学信息科学与工程学院硕士生,主要研究方向为认知无线电中的频谱感知技术等
  • 基金资助:
    国家自然科学基金资助项目(61871246);浙江省杰出青年科学基金资助项目(LR21F010001);宁波市自然科学基金重点项目(202003N4013)

Joint user activity and signal detection for massive multiple-input multiple-output

Xiaoqun SONG, Ming JIN, Zhongjie JIA   

  1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
  • Revised:2020-12-22 Online:2021-05-20 Published:2021-05-01
  • Supported by:
    The National Natural Science Foundation of China(61871246);Zhejiang Provincial Natural Science Funds for Distinguished Young Scholars(LR21F010001);Ningbo Key Program of Natural Science Funds(202003N4013)

摘要:

上行免调度大规模多输入多输出(mMIMO)系统中,当接收天线相关性增加或活跃设备数增大时,传统的联合用户活跃性和信号检测方法性能急剧下降。另外,传统方法需要知道噪声功率,而实际中往往难以获得准确信息。针对上述问题,提出了一种基于酉变换近似消息传递和期望最大化的联合用户活跃性和信号检测方法。与传统的近似消息传递算法不同,所提的酉变换近似消息传递算法假设噪声功率未知。首先,利用酉变换近似消息传递算法将mMIMO基站侧接收信号进行解耦处理,同时估计噪声功率。然后,利用解耦信号,基于期望最大化算法实现用户活跃性检测。最后,通过计算解耦信号所属星座点的后验概率得到信号检测结果。仿真结果表明,所提方法在联合用户活跃性和信号检测方面优于传统方法。

关键词: 大规模多输入多输出, 用户活跃性检测, 信号检测, 酉变换近似消息传递

Abstract:

In uplink grant-free massive multiple-input multiple-output (mMIMO) systems, the performance of available methods for joint user activity and signal detection deteriorates when the correlation of receiving antennas or the number of active devices increases.Moreover, the available methods require the knowledge of noise power, which is often practically unknown.To address the above issues, combining approximate message passing with unitary transformation and expectation maximization algorithm to jointly implement user activity and signal detection was proposed.Different from the conventional approximate message passing algorithm, the proposed one assumes that the noise power was unknown.Firstly, by exploiting the approximate message passing algorithm with unitary transform, the distribution of transmitted symbols together with the distribution of noise power was obtained.Secondly, expectation maximization algorithm was applied to estimate the user activity.Finally, the signal detection was implemented by deriving the posterior distribution of the decoupled signal belongs.Simulation results show that the proposed method is better than the traditional method in joint user activity and signal detection.

Key words: massive multiple-input multiple-output, user activity detection, signal detection, approximate message passing with unitary transformation

中图分类号: 

No Suggested Reading articles found!