电信科学 ›› 2022, Vol. 38 ›› Issue (4): 11-29.doi: 10.11959/j.issn.1000-0801.2022079
虞志刚, 冯旭, 黄照祥, 陆洲
修回日期:
2022-04-10
出版日期:
2022-04-20
发布日期:
2022-04-01
作者简介:
虞志刚(1989− ),男,博士,中国电子科技集团公司电子科学研究院高级工程师,主要研究方向为天地一体化信息网络、空间智能计算基金资助:
Zhigang YU, Xu FENG, Zhaoxiang HUANG, Zhou LU
Revised:
2022-04-10
Online:
2022-04-20
Published:
2022-04-01
Supported by:
摘要:
随着人类活动范围从大陆向海洋、太空的不断扩展,世界各国纷纷开始布局全球无缝覆盖、连接无处不在的天地一体化信息网络建设。天地一体化信息网络是天基网络与地面网络的深度融合,不是简单的地面向空间的拓展与叠加。从融合的角度出发,首先梳理了地面互联网、移动通信网、天基信息网络发展现状以及存在的问题与挑战;然后总结分析了天地一体化信息网络体系架构研究现状以及新型网络架构向云化、智能化发展的趋势;最后提出了通信、网络、计算融合的天地一体化信息网络的体系架构,并从物理架构、功能架构、物理与功能架构映射等多个维度进行了阐述,提出了一体化信息通信系统、一体化网络系统、一体化信息系统的3层功能架构模型,以期为后续天地一体化信息网络的研究、建设和标准化提供有价值的建议和参考。
中图分类号:
虞志刚, 冯旭, 黄照祥, 陆洲. 通信、网络、计算融合的天地一体化信息网络体系架构研究[J]. 电信科学, 2022, 38(4): 11-29.
Zhigang YU, Xu FENG, Zhaoxiang HUANG, Zhou LU. Research on the architecture of space-ground integrated information network: integration of communication, networking and computing[J]. Telecommunications Science, 2022, 38(4): 11-29.
[1] | China Internet Network Information Center . The 48th statistical report on China’s internet development[R]. 2021. |
[2] | 吴曼青 . 关于天地一体化信息网络发展的考虑[C]// 天地一体化信息网络高峰论坛论文集. [北京:出版社不祥], 2013: 72-79. |
WU M Q , . Consideration on the development of integrated information network of space integration ground network[C]// Proceedings of the Space Integration Ground network [Beijing:s.n.], 2013: 72-79. | |
[3] | 虞志刚, 冯旭, 赵晶 ,等. 空间网络安全路由协议研究现状与发展趋势[J]. 中国电子科学研究院学报, 2018,13(6): 625-630,657. |
YU Z G , FENG X , ZHAO J ,et al. Research status and development trends of secure routing protocol for space information network[J]. Journal of China Academy of Electronics and Information Technology, 2018,13(6): 625-630,657. | |
[4] | 汪春霆, 翟立君, 徐晓帆 . 天地一体化信息网络发展与展望[J]. 无线电通信技术, 2020,46(5): 493-504. |
WANG C T , ZHAI L J , XU X F . Development and prospects of space-terrestrial integrated information network[J]. Radio Communications Technology, 2020,46(5): 493-504. | |
[5] | 黄韬, 刘江, 汪硕 ,等. 未来网络技术与发展趋势综述[J]. 通信学报, 2021,42(1): 130-150. |
HUANG T , LIU J , WANG S ,et al. Survey of the future network technology and trend[J]. Journal on Communications, 2021,42(1): 130-150. | |
[6] | 彭木根, 张世杰, 许宏涛 ,等. 低轨卫星通信遥感融合:架构、技术与试验[J]. 电信科学, 2022,38(1): 13-24. |
PENGMG , ZHANGSJ , XU H T ,et al. Communication and remote sensing integrated LEO satellites:architecture,technologies and experiment[J]. Telecommunications Science, 2022,38(1): 13-24. | |
[7] | PAN T , YU N B , JIA C H ,et al. Sailfish:accelerating cloud-scale multi-tenant multi-service gateways with programmable switches[C]// Proceedings of the 2021 ACM SIGCOMM 2021 Conference. New York:ACM Press, 2021: 194-206. |
[8] | 郑秀丽, 蒋胜, 王闯 ,等. 对网络技术跨代发展的思考:网络5.0[J]. 信息通信技术, 2017,61(6): 37-44. |
ZHENG X L , JIANG S , WANG C ,et al. A potential direction of next generation data communication network—network 5.0[J]. Information and Communications Technologies, 2017,61(6): 37-44. | |
[9] | 吴晓文, 焦侦丰, 凌翔 . 6G 中的卫星通信高效天基计算技术[J]. 移动通信, 2021,45(4): 50-53,78. |
WU X W , JIAO Z F , LING X . High-efficiency space-based computing for satellite communications in 6G[J]. Mobile Communications, 2021,45(4): 50-53,78. | |
[10] | 郭丽荣 . 低轨道卫星星座的拓扑结构设计[D]. 北京:北京交通大学, 2021. |
GUO L R . Topology design of LEO satellite constellation[D]. Beijing:Beijing Jiaotong University, 2021. | |
[11] | 闫大伟 . 空间信息网络结构优化设计与拓扑控制方法研究[D]. 长沙:国防科技大学, 2019. |
YAN D W . Research on structural optimization design and topology control method of spatial information network[D]. Changsha:National University of Defense Technology, 2019. | |
[12] | LIU W , TAO Y , LIU L . Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks[J]. IEEE Access, 2019(7): 112044-112053. |
[13] | LIU G P , ZHANG S J . A survey on formation control of small satellites[J]. Proceedings of the IEEE, 2018,106(3): 440-457. |
[14] | JIANG M , LIU Y , XU W . An optimized layered routing algorithm for GEO/LEO hybrid satellite networks[C]// Proceedings of 2016 IEEE International Conference on Trust,Security and Privacy in Computing and Communications. Piscataway:IEEE Press, 2016: 1153-1158. |
[15] | WANG P F , DI B Y , SONG L Y . Multi-layer LEO satellite constellation design for seamless global coverage[C]// Proceedings of 2021 IEEE Global Communications Conference. Piscataway:IEEE Press, 2021: 1-6. |
[16] | 朱立东, 张勇, 贾高一 . 卫星互联网路由技术现状及展望[J]. 通信学报, 2021,42(8): 33-42. |
ZHU L D , ZHANG Y , JIA G Y . Current status and future prospects of routing technologies for satellite Internet[J]. Journal on Communications, 2021,42(8): 33-42. | |
[17] | 曹素芝, 孙雪, 王厚鹏 ,等. 星地融合网络智能路由技术综述[J]. 天地一体化信息网络, 2021,2(2): 11-19. |
CAO S Z , SUN X , WANG H P ,et al. Review of intelligent routing technology in integrated satellite-ground network[J]. Space-Integrated-Ground Information Networks, 2021,2(2): 11-19. | |
[18] | DONG C Y , XU X , LIU A J ,et al. Load balancing routing algorithm based on extended link states in LEO constellation network[J]. China Communications, 2022,19(2): 247-260. |
[19] | 徐明伟, 夏安青, 杨芫 ,等. 天地一体化网络域内路由协议OSPF+[J]. 清华大学学报(自然科学版), 2017,57(1): 12-17. |
XU M W , XIA A Q , YANG Y ,et al. Intra-domain routing protocol OSPF+for integrated terrestrial and space networks[J]. Journal of Tsinghua University (Science and Technology), 2017,57(1): 12-17. | |
[20] | 杨增印, 吴茜, 李贺武 ,等. 天地一体化信息网络域间路由协议NTD-BGP[J]. 清华大学学报(自然科学版), 2019,59(7): 512-522. |
YANG Z Y , WU Q , LI H W ,et al. NTD-BGP:an inter-domain routing protocol for integrated terrestrial satellite networks[J]. Journal of Tsinghua University (Science and Technology), 2019,59(7): 512-522. | |
[21] | QI X G , MA J L , WU D ,et al. A survey of routing techniques for satellite networks[J]. Journal of Communications and Information Networks, 2016,1(4): 66-85. |
[22] | LI H W , LIU L X , LIU J ,et al. Location based routing addressing mechanism of integrated satellite and terrestrial network[J]. Journal on Communications, 2020,41(8): 120-129. |
[23] | 李红艳, 张焘, 张靖乾 ,等. 基于时变图的天地一体化网络时间确定性路由算法与协议[J]. 通信学报, 2020,41(10): 116-129. |
LI H Y , ZHANG T , ZHANG J Q ,et al. Time deterministic routing algorithm and protocol based on time-varying graph over the space-ground integrated network[J]. Journal on Communications, 2020,41(10): 116-129. | |
[24] | XU X , DONG C Y , LIU A J . Research on the adaptation of the load balancing routing to the flow dynamics in LEO constellation networks[C]// Proceedings of 2020 IEEE 20th International Conference on Communication Technology (ICCT). Piscataway:IEEE Press, 2020: 102-106. |
[25] | SEKI M , OGURA K , YAMASAKI Y ,et al. Performance comparison of geographic DTN routing algorithms[C]// Proceedings of 2015 IEEE 39th Annual Computer Software and Applications Conference. Piscataway:IEEE Press, 2015: 617-620. |
[26] | MULLINS D R , EL AMIN M , POSKETT P . Inmarsat 3 communications system requirements[C]//Proceedings of IEE Colloquium on INMARSAT-3.IET1991:2/1-2/6. Proceedings of IEE Colloquium on INMARSAT-3.IET1991:2/1-2/6. |
[27] | MORSE D C , GRIEP K , DEININGER R ,et al. Next generation FANS over Inmarsat broadband global area network (BGAN)[C]// Proceedings of 23rd Digital Avionics Systems Conference (IEEE Cat.No.04CH37576). Piscataway:IEEE Press, 2004:11.B.4-111. |
[28] | WU Y , HU G Y , JIN F L ,et al. A satellite handover strategy based on the potential game in LEO satellite networks[J]. IEEE Access, 2019(7): 133641-133652. |
[29] | CHEN S Z , LIANG Y C , SUN S H ,et al. Vision,requirements,and technology trend of 6G:how to tackle the challenges of system coverage,capacity,user data-rate and movement speed[J]. IEEE Wireless Communications, 2020,27(2): 218-228. |
[30] | DARWISH H , KURT G K , YANIKOMEROGLU H ,et al. LEO satellites in 5G and beyond networks: a review from a standardization perspective[J]. IEEE Access, 2020(10): 35040-35060. |
[31] | LIN X Q , ROMMER S , EULER S ,et al. 5G from space:an overview of 3GPP non-terrestrial networks[J]. IEEE Communications Standards Magazine, 2021,5(4): 147-153. |
[32] | 3GPP. Technical specification group radio access network study on new radio (NR) to support non-terrestrial networks[R]. 2019. |
[33] | ETSI. DVB document A83-2,digital video broadcasting (DVB);2nd generation framing structure,channel coding and modulation systems for broadcasting,interactive services,news gathering and other broadband satellite applications[R]. 2020. |
[34] | 孙晨华, 章劲松, 赵伟松 ,等. 高低轨宽带卫星通信系统特点对比分析[J]. 无线电通信技术, 2020,46(5): 505-510. |
SUN C H , ZHANG J S , ZHAO W S ,et al. Comparative analysis of GEO and LEO broadband satellite communication system[J]. Radio Communications Technology, 2020,46(5): 505-510. | |
[35] | CHEN S Z , SUN S H , KANG S L . System integration of terrestrial mobile communication and satellite communication—the trends,challenges and key technologies in B5G and 6G[J]. China Communications, 2020,17(12): 156-171. |
[36] | 冯少栋, 冯琦, 沈俊 . 美国 Spaceway-3 系统概述[J]. 数字通信世界, 2009(12): 82-85. |
FENG S D , FENG Q , SHEN J . A summery of American Spaceway-3 system[J]. Digital Communication World, 2009(12): 82-85. | |
[37] | YOU D W , TAKAHASHI Y , TAKEDA S ,et al. A Ka-band 16-element deployable active phased array transmitter for satellite communication[C]// Proceedings of 2021 IEEE MTT-S International Microwave Symposium. Piscataway:IEEE Press, 2021: 799-802. |
[38] | TIAN B , LI Y , CAI M ,et al. Design of ka-band active phased-array antenna for GEO communication satellite payloads[C]// Proceedings of International Applied Computational Electromagnetics Society Symposium.[S.l.:s.n.], 2017: 1-2. |
[39] | YOU D , AWAJI D , SHIRANE A ,et al. A flexible element antenna for Ka-band active phased array SATCOM transceiver[C]// Proceedings of IEEE Asia-Pacific Microwave Conference. Piscataway:IEEE Press, 2020: 991-993. |
[40] | HWU S U , DESILVA K B , JIH C T . Terahertz (THz) wireless systems for space applications[C]// Proceedings of 2013 IEEE Sensors Applications Symposium Proceedings. Piscataway:IEEE Press, 2013: 171-175. |
[41] | LI R , LIN B J , LIU Y C ,et al. A survey on laser space network:terminals,links,and architectures[J]. IEEE Access, 2022(10): 34815-34834. |
[42] | 中国联通. 中国联通 CUBE-Net 3.0 网络创新体系白皮书[R]. 2021. |
China Unicom. China Unicom CUBE-Net 3.0:network innovation system white paper[R]. 2021. | |
[43] | 中国电信. 中国电信云网融合2030技术白皮书[R]. 2020. |
China Telecom . China Telecom cloud-network convergence 2030 technology white paper[R]. 2020. | |
[44] | BOSSHART P , DALY D , GIBB G ,et al. P4:programming protocol-independent packet processors[J]. ACM SIGCOMM Computer Communication Review, 2014,44(3): 87-95. |
[45] | YANG M , LI Y , JIN D ,et al. OpenRAN:a software-defined ran architecture via virtualization[J]. ACM SIGCOMM Computer Communication Review, 2013,43(4): 549-550. |
[46] | IMT-2030 (6G)工作推进组. 6G 网络架构愿景与关键技术展望白皮书[R]. 2021. |
IMT-2030 (6G) Working Group. 6G network architecture vision& key technology vision white paper[R]. 2021. |
[1] | 刘雅琼, 吕哲, 赵亚飞, 寿国础. AI技术在卫星通信/互联网领域的应用综述[J]. 电信科学, 2023, 39(2): 10-24. |
[2] | 蒋瑞红, 冯一哲, 孙耀华, 郑海娜. 面向低轨卫星网络的组网关键技术综述[J]. 电信科学, 2023, 39(2): 37-47. |
[3] | 郑师应, 李源, 杨博涵, 马帅, 肖善鹏. 5G+行业现场网技术与产业发展综述[J]. 电信科学, 2022, 38(Z1): 17-27. |
[4] | 于青民, 黄颖, 汪卫国, 张倩. “5G+工业互联网”行业应用综述[J]. 电信科学, 2022, 38(Z1): 36-42. |
[5] | 刘垚圻, 李红光, 周一青, 石晶林, 马英矫, 钱蔓藜. 基于工业5G的柔性智造孪生控制平台[J]. 电信科学, 2022, 38(Z1): 174-183. |
[6] | 王文哲, 安岗, 吴健, 赵文东, 王延刚, 赵云峰, 狄子翔, 顾照杰, 邹贵祥. 一种支持云原生的工业互联网业务管理平台[J]. 电信科学, 2022, 38(Z1): 203-213. |
[7] | 王文哲, 安岗, 李忻, 张伟强, 刘振华, 郑念卿, 陈盛伟, 赵文东, 狄子翔, 顾照杰. 面向空天地一体化场景的5G卫星双模终端需求及应用探讨[J]. 电信科学, 2022, 38(Z1): 221-230. |
[8] | 王峰, 于青民, 黄颖, 段世惠. 工业互联网网络关键技术与发展研究[J]. 电信科学, 2022, 38(7): 106-113. |
[9] | 张姗姗, 王馥芸. 互联网企业创新效率与规模关系的实证分析[J]. 电信科学, 2022, 38(6): 111-119. |
[10] | 余乐, 朱立东, 金亮, 李佳立, 刘轶伦, 郭晟. 基于广义近似消息传递的扰码多址卫星接收技术[J]. 电信科学, 2022, 38(4): 77-89. |
[11] | 李攀攀, 谢正霞, 王赠凯, 靳锐. 开放互联网环境基于信息熵的信息传播影响力计算方法[J]. 电信科学, 2022, 38(4): 90-100. |
[12] | 常晓宇, 张伟嘉, 李旭东, 张晓男, 王港, 贾钢. 遥感卫星随遇接入互联网星座和在轨智能处理[J]. 电信科学, 2022, 38(4): 59-69. |
[13] | 段晓东, 孙滔. 面向融合、智慧、低碳的5G技术演进[J]. 电信科学, 2022, 38(3): 3-9. |
[14] | 刘姿杉, 赖俊森, 赵文玉. 量子互联网关键技术与发展研究[J]. 电信科学, 2022, 38(2): 18-24. |
[15] | 张振华, 孙思月, 刘高赛, 王龙, 姜兴龙, 董琳, 梁广. 卫星互联网光电混合交换技术综述[J]. 电信科学, 2022, 38(11): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|