电信科学 ›› 2013, Vol. 29 ›› Issue (2): 64-69.doi: 10.3969/j.issn.1000-0801.2013.02.011

• 研究与开发 • 上一篇    下一篇

基于树状稀疏模型的视觉传感器网络图像数据重构

胡敏1,黄旭伟1,龙丹2,沈才樑1   

  1. 1 浙江工业职业技术学院 绍兴 312000
    2 浙江大学 杭州 315580
  • 出版日期:2013-02-15 发布日期:2017-02-22
  • 基金资助:
    国家自然科学基金资助项目;国家自然科学基金资助项目;国家自然科学基金子课题资助项目

Image Reconstruction Algorithm Based on Tree Sparsity Model for Visual Sensor Network

Min Hu1,Xuwei Huang1,Dan Long2,Cailiang Shen1   

  1. 1 Zhejiang Industry Polytechnic Co11ege,Shaoxing 312000,China
    2 Zhejiang University,Hangzhou 315580,China
  • Online:2013-02-15 Published:2017-02-22

摘要:

针对现有压缩感知算法无法有效利用视觉传感器网络中图像数据相关性的问题,提出一种基于树状稀疏模型的视觉传感器网络数据压缩感知算法。在分析图像数据小波域稀疏特性的基础上,构建了一种视觉传感器网络图像数据的树状稀疏模型,进而针对此模型设计一种新的压缩感知重构算法。理论分析和实验结果表明,相比于传统图像数据压缩感知算法,该算法可有效利用图像数据相关性减少准确重构图像数据所需的测量值,降低视觉传感器网络数据传输能耗。

关键词: 视觉传感器网络, 压缩感知, 树状稀疏性, 数据重构

Abstract:

A tree sparsity mode1 based image compressed sensing(CS)algorithm was proposed to efficiently explore the correlation in visua1 sensor networks(VSN)data. Based on the analysis of wavelet sparsity,a tree sparsity mode1 for VSN image was established and a new CS recovery algorithm for this mode1 was proposed. Analysis and experimenta1 results demonstrate that the proposed algorithm can significantly reduce the measurement for the accurate recovery,and subsequently 1ower energy consumption of data traffic in VSN.

Key words: visua1 sensor network, compressed sensing, tree sparsity, data reconstruction

No Suggested Reading articles found!