1 |
Hettich S , Bay S D . KDD cup 1999. , 2007
|
2 |
Weiss G , Provost F . Learning when training data are costly:the effect of class distribution on tree induction. Artificial Intelligence Research, 2003(19):315~354
|
3 |
Kubat M , Matwin S . Addressing the curse of imbalanced data sets:one sided sampling. Proceedings of the 14th International Conference on Machine Learning, Nashville,USA, 1997
|
4 |
Chen X , Gerlach B , Casasent D . Pruning support vectors for imbalanced data classification. Proceedings of IEEE International Joint Conference on Neural Networks, Montreal,Quebec,Canada, 2005
|
5 |
Kubat M , Matwin S . Learning when negative examples abound. Proceedings of the 9th European Conference on Machine Learning, Prague,Czech Republic, 1997
|
6 |
Chawla N , Bowyer K , Hall L , et al. SMOTE:synthetic minority over-sampling technique. Artificial Intelligence Research, 2002(16):321~357
|
7 |
Estabrooks A , Jo T , Japkowicz N . A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 2004,20(1):18~36
|
8 |
Ling C , Li C . Data mining for direct marketing problems and solutions. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York,USA, 1998
|
9 |
Chawla N , Japkowicz N , Kotcz A . Editorial:special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 2004,6(1):1~6
|
10 |
Putten P V D , Someren M V . A bias-variance analysis of a real world learning problem:the CoIL challenge 2000. Machine Learning, 2004,57(1-2):177~195
|
11 |
Forman G . An extensive empirical study of feature selection metrics for text classification. Machine Learning Research, 2003(3):1289~1305
|
12 |
Zheng Z , Wu X , Srihari R . Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter, 2004(6):80~89
|
13 |
Zhang H , Lu G , Qassrawi M T , et al. Feature selection for optimizing traffic classification. Computer Communications, 2012,35(12):1457~1471
|
14 |
Galar M , Fernández A , Barrenechea E , et al. A review on ensembles for the class imbalance problem:bagging,boosting,and hybrid-based approaches. IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews, 2012,42(4):463~484
|
15 |
Seiffert C , Khoshgoftaar T , Van Hulse J , et al. Rusboost:ahybrid approach to alleviating class imbalance. IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans, 2010,40(1):185~197
|
16 |
Liu X Y , Wu J , Zhou Z H . Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics, 2009,39(2):539~550
|
17 |
Sun Y , Kamel M S , WongA K , et al. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 2007,40(12):3358~3378
|
18 |
Van Hulse J , Khoshgoftaar T , Napolitano A . An empirical comparison of repetitive undersampling techniques. Proceedings of IEEE International Conference on Information Reuse &Integration, Las Vegas,NN,USA, 2009:29~34
|
19 |
Breiman L . Bagging predictors. Machine Learning, 1996(24):123~140
|
20 |
Xie G , Iliofotou M , Keralapura R , et al. Subflow:towards practical flow-level traffic classification. Proceedings of IEEE INFOCOM, Orlando,FL,USA, 2012
|