随着工业互联网、车联网、元宇宙等新型互联网应用的兴起,网络的低时延、可靠性、安全性、确定性等方面的需求正面临严峻挑战。采用网络功能虚拟化技术在虚拟网络部署过程中,存在服务功能链映射效率低与部署资源开销大等问题,联合考虑节点激活成本、实例化开销,以最小化平均部署网络成本为优化目标建立了整数线性规划模型,提出基于改进灰狼优化算法的服务功能链映射(improved grey wolf optimization based service function chain mapping,IMGWO-SFCM)算法。该算法在标准灰狼优化算法基础上添加了基于无环K最短路径(K shortest path,KSP)问题算法的映射方案搜索、映射方案编码以及基于反向学习与非线性收敛改进三大策略,较好地平衡了其全局搜索及局部搜索能力,实现服务功能链映射方案的快速确定。仿真结果显示,该算法在保证更高的服务功能链请求接受率下,相较于对比算法降低了11.86%的平均部署网络成本。