25 March 2024, Volume 9 Issue 1
    

  • Select all
    |
    Review paper
  • Hui Liang, Zhiqing Yang, Guobin Zhang, Hanxu Hou
    Journal of Communications and Information Networks. 2024, 9(1): 1-23. https://doi.org/10.23919/JCIN.2024.10272365
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    The space-air-ground integrated networks (SAGIN) has emerged as a critical paradigm to address the growing demands for global connectivity and enhanced communication services. This paper gives a thorough review of the strategies and methodologies for resource allocation within SAGIN, focusing on the challenges and solutions within its complex structure. With the advent of technologies such as 6G, the dynamics of resource optimization have become increasingly complex, necessitating innovative approaches for efficient management. We examine the application of mathematical optimization, game theory, artificial intelligence (AI), and dynamic optimization techniques in SAGIN,offering insights into their effectiveness in ensuring optimal resource distribution, minimizing delays, and maximizing network throughput and stability. The survey highlights the significant advances in AI-based methods,particularly deep learning and reinforcement learning, in tackling the inherent challenges of SAGIN resource allocation. Through a critical review of existing literature, this paper categorizes various resource allocation strategies, identifies current research gaps, and discusses potential future directions. Our findings highlight the crucial role of integrated and intelligent resource allocation mechanisms in realizing the full potential of SAGIN for next-generation communication networks.

  • Research papers
  • Yue Gao, Kun Qiu, Zhe Chen, Wenjun Zhu, Qi Zhang, Handong Luo, Quanwei Lin, Ziheng Yang, Wenhao Liu
    Journal of Communications and Information Networks. 2024, 9(1): 24-33. https://doi.org/10.23919/JCIN.2024.10272366
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    The development of space-air-ground integrated networks (SAGIN) requires sophisticated satellite Internet emulation tools that can handle complex, dynamic topologies and offer in-depth analysis. Existing emulation platforms struggle with challenges like the need for detailed implementation across all network layers, real-time response, and scalability. This paper proposes a digital twin system based on microservices for satellite Internet emulation,namely Plotinus,which aims to solve these problems. Plotinus features a modular design, allowing for easy replacement of the physical layer to emulate different aerial vehicles and analyze channel interference. It also enables replacing of path computation methods to simplify testing and deploying algorithms. In particular, Plotinus allows for real-time emulation with live network traffic,enhancing practical network models. The evaluation result shows Plotinus’s effective emulation of dynamic satellite networks with real-world devices. Its adaptability for various communication models and algorithm testing highlights Plotinus’s role as a vital tool for developing and analyzing SAGIN systems, offering a cross-layer,real-time,and scalable digital twin system.

  • Jingqing Wang, Wenchi Cheng, Wei Zhang, Hui Liang
    Journal of Communications and Information Networks. 2024, 9(1): 34-42. https://doi.org/10.23919/JCIN.2024.10272367
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    The emergence of massive ultra-reliable and low latency communications (mURLLC) as a category of age/time/reliability-sensitive service over 6G wireless networks has received considerable research attention, which has presented unprecedented challenges. As one of the key enablers for 6G,satellite-terrestrial integrated networks (STIN) have been developed to offer more expansive connectivity and comprehensive 3D coverage in space-aerial-terrestrial domains for supporting 6G mission-critical mURLLC applications while fulfilling diverse and rigorous quality of service (QoS) requirements. In the context of these mURLLC-driven satellite services, data freshness assumes paramount importance, as outdated data may engender unpredictable or catastrophic outcomes.To effectively measure data freshness in satellite-terrestrial integrated communications,age of information(AoI)has recently surfaced as a new dimension of QoS metric to support time-sensitive applications. It is crucial to design new analytical models that ensure stringent and diverse QoS metrics bounded by different key parameters,including AoI,delay,and reliability,over 6G satellite-terrestrial integrated networks. However,due to the complicated and dynamic nature of satellite-terrestrial integrated network environments, the research on efficiently defining new statistical QoS provisioning schemes while taking into account varying degrees of freedom has still been in their infancy. To remedy these deficiencies, in this paper we develop statistical QoS provisioning schemes over 6G satellite-terrestrial integrated networks in the finite blocklength regime. Particularly, we firstly introduce and review key technologies for supporting mURLLC.Secondly,we formulate a number of novel fundamental statistical-QoS metrics in the finite blocklength regime.Finally,we conduct a set of simulations to validate and evaluate our developed statistical QoS provisioning schemes over satellite-terrestrial integrated networks.

  • Qian Chen, Weixiao Meng, Shuai Han, Cheng Li
    Journal of Communications and Information Networks. 2024, 9(1): 43-55. https://doi.org/10.23919/JCIN.2024.10272368
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    In the advent of the 6G era, non-terrestrial networks (NTN) with expansive coverage are being increasingly recognized as a vital supplement to cellular networks for facilitating seamless communication. The intricate interplay between network performance and service quality necessitates a thorough investigation into the modeling and analysis of services for efficient construction of NTN.Previous studies on service analysis, predominantly focused on terrestrial networks,fall short in addressing the unique challenges posed by NTN,particularly those related to platform distribution and antenna gain modeling. This deficiency in research,coupled with the varying preferences of users for different network types, forms the basis of this study. This paper explores the spatio-temporal characteristics of services within a multi-layered NTN framework.In this context,the spatial distribution of the platforms is modeled using a binomial point process, and the antennas are characterized by a sectorized beam pattern. We derive the closed-form expressions for the association probability,the number of accessed users, and the arrival rate of services with certain delay requirements towards different types of NTN. Simulation results are provided to evaluate the influence of various parameters on the association probability, the number of accessed users, and the total arrival rate of services. The number of satellites can be determined to achieve the optimal system utility,balancing the accessed services, offloading effects, and launching costs. This initial investigation lays the groundwork for further theoretical progress in the service analysis and platform deployment of NTN.

  • Weijie Liu, Jingyi Zhang, Nuo Huang, Zhengyuan Xu
    Journal of Communications and Information Networks. 2024, 9(1): 56-63. https://doi.org/10.23919/JCIN.2024.10272369
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    Underwater optical wireless communication (UOWC) technology facilitates high-speed data transmission among multiple nodes in underwater networks. Nevertheless, the absence of a common clock poses a challenge to achieving systematic and reliable access for multiple nodes within these networks. This paper presents a time synchronization method for UOWC networks to ensure the successful execution of the media access control (MAC) protocol. In this method, the node obtains timestamps by exchanging messages with the optical access point (OAP). Subsequently, the node calculates the clock drift relative to the OAP and the propagation time,ensuring that transmitted data packets can arrive approximately at the time specified by the OAP. To validate the effect of the proposed method, an experimental UOWC prototype, including the OAP and nodes, is implemented using field programmable gate array (FPGA). The experimental results demonstrate that the maximum difference between the actual arrival times of two data packets that are expected to reach the OAP simultaneously according to the MAC protocol meets the requirements of the quasi-synchronous code division multiple access (QS-CDMA) system, thereby substantiating the effectiveness of this synchronization method.

  • Yining Xu, Sheng Zhou
    Journal of Communications and Information Networks. 2024, 9(1): 64-79. https://doi.org/10.23919/JCIN.2024.10272370
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    Reconfigurable intelligent surface(RIS)is a promising solution to deal with the blockage-sensitivity of millimeter wave band and reduce the high energy consumption caused by network densification. However, deploying large scale RISs may not bring expected performance gain due to significant channel estimation overhead and non-negligible reflected interference.In this paper,we derive the analytical expressions of the coverage probability, area spectrum efficiency(ASE)and energy efficiency (EE)of a downlink RIS-aided multi-cell network.In order to optimize the network performance, we investigate the conditions for the optimal number of training symbols of each antenna-to-antenna and antenna-to-element path (referred to as the optimal unit training overhead) in channel estimation.Our study shows that:1)RIS deployment is not“the more, the better”, only when blockage objects are dense should one deploy more RISs; 2) the coverage probability is maximized when the unit training overhead is designed as large as possible;3)however,the ASE-and-EE-optimal unit training overhead exists. It is a monotonically increasing function of the frame length and a monotonically decreasing function of the average signal-to-noise-ratio (in the high signal-to-noise-ratio region). Additionally,the optimal unit training overhead is smaller when communication nodes deploy particularly few or many antennas.

  • Yuanming Tian, Dongxu Li, Chuan Huang, Qingwen Liu, Shengli Zhou
    Journal of Communications and Information Networks. 2024, 9(1): 80-87. https://doi.org/10.23919/JCIN.2024.10272371
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    Resonant beam communications (RBCom), which adopts oscillating photons between two separate retroreflectors for information transmission, exhibits potential advantages over other types of wireless optical communications (WOC). However, echo interference generated by the modulated beam reflected from the receiver affects the transmission of the desired information. To tackle this challenge, a synchronization-based point-to-point RBCom system is proposed to eliminate the echo interference, and the design for the transmitter and receiver is discussed. Subsequently,the performance of the proposed RBCom is evaluated and compared with that of visible light communications(VLC)and free space optical communications (FOC). Finally, future research directions are outlined and several implementation challenges of RBCom systems are highlighted.

  • Gang Yang, Guodong Hou, Ningning Feng, Weida Meng
    Journal of Communications and Information Networks. 2024, 9(1): 88-98. https://doi.org/10.23919/JCIN.2024.10272372
    Abstract ( ) Download PDF ( ) HTML ( )   Knowledge map   Save

    To solve the problem of large positioning error and discontinuous positioning of special forces members when moving in cross-region indoors and outdoors, and to compensate for the linearization error and local convergence problem that may exist in the extended Kalman filter(EKF)in nonlinear systems, that is,the iterative results may be trapped in a local optimum situation, a seamless indoor-outdoor switching localization algorithm based on cubature Kalman filter (CKF) is proposed. CKF does not require the computation of Jacobian matrices, which can improve computational efficiency and filtering accuracy to a certain extent. In the system, an inertial measurement unit (IMU) is employed to correct the positioning errors of ultra-wideband (UWB)and BeiDou navigation satellite system(BDS).The positioning data from UWB and BeiDou in cross-region are weighted fused and then fused with the data from the IMU using CKF to obtain the final accurate positioning information. This study designs a scene-switching mechanism to achieve seamless switching between indoor and outdoor positioning scenes. By jointly analyzing the positioning accuracy of UWB and BeiDou,the positioning scene is determined, and appropriate counting thresholds are set to avoid frequent erroneous scene switches. Experimental results show that the proposed algorithm achieves a positioning accuracy of approximately 21.7 cm in cross-region,which can enable seamless integration of indoor and outdoor positioning,avoid positioning jumps, and enhance positioning accuracy.