[1] |
CUSICK T , DING C , RENVALL A . Stream ciphers and number theory[M]. Elsevier, 2004.
|
[2] |
DING C . Pattern distributions of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998,44(4): 1693-1698.
|
[3] |
DING C , HELLESETH T , SHAN W . On the linear complexity of Legendre sequences[J]. IEEE Transactions on Information Theory, 1998,44(3): 1276-1278.
|
[4] |
KIM J , SONG H . Trace representation of Legendre sequences[J]. Designs,Codes and Cryptography, 2001,24(3): 343-348.
|
[5] |
DING C , HELLESETH T , LAM K . Several classes of binary sequences with three-level autocorrelation[J]. IEEE Transactions on Information Theory, 1999,45(7): 2606-2612.
|
[6] |
KIM J , SONG H . On the linear complexity of Hall's sextic residue sequences[J]. IEEE Transactions on Information Theory, 2001,47(5): 2094-2096.
|
[7] |
KIM J , SONG H , GONG G . Trace function representation of Hall's sextic residue sequences of period p≡7(mod 8)[M]. NewYork: Kluwer Academic Publishers, 2003,23-32.
|
[8] |
CAI Y , DING C . Binary sequences with optimal autocorrelation[J]. Theoretical Computer Science, 2009,410(24-25): 2316-2322.
|
[9] |
DING C , HELLESETH T . On cyclotomic generator of orderr[J]. Information Processing Letters, 1998,66(1): 21-25.
|
[10] |
WANG Q , LIN D , GUANG X . On the linear complexity of Legendre sequences over Fg[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences, 2014,97(7): 1627-1630.
|
[11] |
HOFER R , WINTERHOF A . On the arithmetic autocorrelation of the Legendre sequence[J]. Advances in Mathematics of Communications, 2017,11(1): 237-244.
|
[12] |
DU X , CHEN Z . A generalization of the Hall's sextic residue sequences[J]. Information Sciences, 2013,222: 784-794.
|
[13] |
XIONG H , QU L , LI C . A new method to compute the 2-adic complexity of binary sequences[J]. IEEE Transactions on Information Theory, 2014,60(4): 2399-2406.
|
[14] |
SU W , YANG Y , FAN C . New optimal binary sequences with period 4p via interleaving Ding-Helleseth-Lam sequences[J]. Designs,Codes and Cryptography, 2018,86(6): 1329-1338.
|
[15] |
WHITEMAN A . A family of difference sets[J]. Journal of Mathematics., 1962,6(1): 107-121.
|
[16] |
DING C , HELLESETH T . New generalized cyclotomy and its applications[J]. Finite Fields and their Applications, 1998,4(2): 140-166.
|
[17] |
ZENG X , CAI H , TANG X ,et al. Optimal frequency hopping sequences of odd length[J]. IEEE Transactions on Information Theory, 2013,59(5): 3237-3248.
|
[18] |
刘龙飞, 杨凯, 杨晓元 . 新的周期为pm的GF(h)上广义割圆序列的线性复杂度[J]. 通信学报, 2017,38(9): 39-45.
|
|
LIU L F , YANG K , YANG X Y . On the linear complexity of a new generalized cyclotomic sequence with length pmover GF(h)[J]. Journal on Communications, 2017,38(9): 39-45.
|
[19] |
XIAO Z , ZENG X , LI C ,et al. New generalized cyclotomic binary sequences of period p2[J]. Designs,Codes and Cryptography, 2018,86(7): 1483-1497.
|
[20] |
CHEN Z , EDEMSKIY V , KE P ,et al. On k -error linear complexity of pseudorandom binary sequences derived from Euler quotients[J]. Advances in Mathematics of Communications, 2018,12(4): 805-816.
|
[21] |
WU C , XU C , Chen Z ,et al. On error linear complexity of new generalized cyclotomic binary sequences of period p2[J]. Information Processing Letters, 2019,144: 9-15.
|
[22] |
CHEN Z , NIU Z , WU C . On the k -error linear complexity of binary sequences derived from polynomial quotients[J]. Science China Information Sciences, 2015,58(9): 1-15.
|
[23] |
ALY H , MEIDL W , WINTERHOF A . On the k-error linear complexity of cyclotomic sequences[J]. Journal of Mathematical Cryptology, 2007,1(3): 283-296.
|
[24] |
ALY H , WINTERHOF A . On the k -error linear complexity over Fpof Legendre and Sidel'nikov sequences[J]. Designs,Codes and Cryptography, 2006,40(3): 369-374.
|
[25] |
DING C , . Binary cyclotomic generators[C]// Fast Software Encryption-FSE'95. 1995: 29-60.
|
[26] |
STAMP M , MARTIN C . An algorithm for the k-error linear complexity of binary sequences with period 2n[J]. IEEE Transactions on Information Theory, 1993,39(4): 1398-1401.
|
[27] |
DING C , XIAO G , SHAN W . The stability theory of stream ciphers[M]. Berlin: Springer-VerlagPress, 1991.
|
[28] |
MASSEY J . Codes and ciphers:Fourier and Blahut[M]. Boston: SpringerPress, 1998: 105-119.
|
[29] |
MASSEY J , SERCONEK S . A Fourier transform approach to the linear complexity of nonlinearly filtered sequences[C]// Annual International Cryptology Conference.Springer. 1994: 332-340.
|
[30] |
BLAHUT R . Transform techniques for error control codes[J]. IBM Journal of Research and development, 1979,23(3): 299-315.
|
[31] |
MACWILLIAMS F , SLOANE N . The theory of error-correcting codes[M]. Amsterdam: ElsevierPress, 1977.
|
[32] |
DAI Z , GONG G , SONG H ,et al. Trace representation and linear complexity of binary e th power residue sequences of period p[J]. IEEE Transactions on Information Theory, 2011,57(3): 1530-1547.
|
[33] |
ALECU A , SALAGEAN A . An approximation algorithm for computing the k-error linear complexity of sequences using the discrete fourier transform[C]// IEEE International Symposium on Information Theory,2008, 2008, 2414-2418.
|
[34] |
SALAGEAN A , ALECU A . An improved approximation algorithm for computing the k-error linear complexity of sequences using the discrete fourier transform[C]// International Conference on Sequences and their Applications. 2010: 151-165.
|
[35] |
DING C , YANG J . Hamming weights in irreducible cyclic codes[J]. Discrete Mathematics, 2013,313(4): 434-446.
|