通信学报 ›› 2020, Vol. 41 ›› Issue (4): 134-142.doi: 10.11959/j.issn.1000-436x.2020067

• 学术论文 • 上一篇    下一篇

基于特征流融合的带噪语音检测算法

龙华,杨明亮(),邵玉斌   

  1. 昆明理工大学信息工程与自动化学院,云南 昆明 650031
  • 修回日期:2020-03-12 出版日期:2020-04-25 发布日期:2020-04-30
  • 作者简介:龙华(1963- ),女,回族,云南大理人,博士,昆明理工大学教授,主要研究方向为无线网络及音频信号处理|杨明亮(1994- ),男,四川宜宾人,昆明理工大学硕士生,主要研究方向为音频信号处理、语音识别|邵玉斌(1970- ),男,云南曲靖人,昆明理工大学教授,主要研究方向为移动通信和个人通信系统以及信号处理
  • 基金资助:
    国家自然科学基金资助项目(61761025)

Noisy voice detection algorithm based on feature stream fusion

Hua LONG,Mingliang YANG(),Yubin SHAO   

  1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650031,China
  • Revised:2020-03-12 Online:2020-04-25 Published:2020-04-30
  • Supported by:
    The National Natural Science Foundation of China(61761025)

摘要:

针对语音通话中语音段的起始检测性能不佳,检测语音连续性结构受到破坏的问题,提出了一种基于特征流融合的带噪语音检测算法。首先,根据语音特性分别提取时域特征流、谱图特征流和统计特征流;其次,利用不同的语音特征流分别对带噪音频中的语音段进行概率估测;最后,将各个特征流估测得到的语音估测概率进行加权融合,并利用隐马尔可夫模型对语音估测概率进行短时状态处理。通过对复合语音数据库在多类型噪声与不同信噪比条件下的性能测试表明,所提算法相对于基于贝叶斯与 DNN 分类器的基线模型相比,语音检测正确率分别提高了21.26%与11.01%,显著提高了目标语音的质量。

关键词: 语音通话, 语音检测, 特征流融合, 隐马尔可夫模型

Abstract:

Aiming at the problem that the initial detection performance of voice segment was poor,and the voice continuity structure was damaged in voice communication,a noisy voice detection algorithm based on feature stream fusion was proposed.Firstly,the time domain feature stream,the spectral pattern feature stream and the statistical feature stream were extracted according to the voice characteristics.Secondly,the voice segment in the noisy audio was estimated by different voice feature streams.Finally,the voice prediction probability obtained by each feature stream was weighted and fused,and the voice estimation probability was processed in short time by the hidden Markov model.The performance test of composite voice database under the condition of multi-type noise and different signal-to-noise ratio shows that compared with the baseline model based on Bayesian and DNN classifier,the voice detection accuracy of the proposed algorithm is improved by 21.26% and 11.01% respectively,and the quality of target voice is significantly improved.

Key words: voice communication, voice detection, feature stream fusion, hidden Markov model

中图分类号: 

No Suggested Reading articles found!