[1] |
VAROL G , LAPTEV I , SCHMID C . Long-term temporal convolutions for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(6): 1510-1517.
|
[2] |
HU J F , ZHENG W S , LAI J ,et al. Jointly learning heterogeneous features for RGB-D activity recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(11): 2186-2200.
|
[3] |
DONAHUE J , HENDRICKS L A , ROHRBACH M ,et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4): 677-691
|
[4] |
ZHANG L , WU X , LUO D . Human activity recognition with HMM-DNN model[C]// 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI&CC). IEEE, 2015: 192-197.
|
[5] |
ANGUITA D , GHIO A , ONETO L ,et al. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine[C]// International Workshop on Ambient Assisted Living. Springer, 2012: 216-223.
|
[6] |
李云鹤 . 智能穿戴设备基于动态模板匹配算法的 3D 手势识别[J]. 物联网学报, 2019,3(1): 97-105.
|
|
LI Y H . 3D gesture recognition based on dynamic template matching algorithm for intelligent wearable devices[J]. Chinese Journal on Internet of Things, 2019,3(1): 97-105.
|
[7] |
ALSHEIKH M A , SELIM A , NIYATO D ,et al. Deep activity recognition models with triaxial accelerometers[C]// Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 2015: 689-692.
|
[8] |
ZENG M , YU T , WANG X ,et al. Semi-supervised convolutional neural networks for human activity recognition[C]// 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017: 522-529.
|
[9] |
LEE S M , YOON S M , CHO H . Human activity recognition from accelerometer data using convolutional neural network[C]// 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2017: 131-134.
|
[10] |
JIANG W , YIN Z . Human activity recognition using wearable sensors by deep convolutional neural networks[C]// Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 2015: 1307-1310.
|
[11] |
YANG J , NGUYEN M N , SAN P P ,et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015: 3995-4001.
|
[12] |
HAMMERLA N Y , HALLORAN S , PLOETZ T . Deep,convolutional,and recurrent models for human activity recognition using wearables[J]. Journal of Scientific Computing, 2016,61(2): 454-476.
|
[13] |
SHI X , CHEN Z , WANG H ,et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]// Advances in Neural Information Processing Systems. 2015: 802-810.
|
[14] |
TAO D , WEN Y , HONG R . Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition[J]. IEEE Internet of Things Journal, 2016,3(6): 1124-1134.
|
[15] |
ORDó?EZ F , ROGGEN D . Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016,16(1): 115-140.
|
[16] |
RUSH A M , CHOPRA S , WESTON J . A neural attention model for abstractive sentence summarization[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 379-389.
|
[17] |
LAI J L , YI Y . Key frame extraction based on visual attention model[J]. Journal of Visual Communication and Image Representation, 2012,23(1): 114-125.
|
[18] |
RAFFEL C , ELLIS D P W . Feed-forward networks with attention can solve some long-term memory problems[J]. arXiv, 2016: 1-6.
|
[19] |
REYES-ORTIZ J L , ONETO L , SAMà A ,et al. Transition-aware human activity recognition using smartphones[J]. Neurocomputing, 2016,171: 754-767.
|