[1] |
董耀华, 孙伟, 董丽华 ,等. 我国内河“船联网”建设研究[J]. 水运工程, 2012(8): 145-149.
|
|
DONG Y H , SUN W , DONG L H ,et al. On construction of Internet of ships[J]. Water Transport Engineering, 2012(8): 145-149.
|
[2] |
WILLIAMS B M , HOEL L A . Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003,129(6): 664-672.
|
[3] |
VAN L H , VAN H C . Short-term traffic and travel time prediction models[J]. Transportation Research E-circular, 2012,22(1): 22-41.
|
[4] |
JEONG Y S , BYON Y J , CASTRO-NETO M M ,et al. Supervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(4): 1700-1707.
|
[5] |
MA X L , TAO Z M , WANG Y H ,et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies, 2015,54: 187-197.
|
[6] |
MA X L , DAI Z , HE Z B ,et al. Learning traffic as images:a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017,17(4):818.
|
[7] |
LIU Y P , ZHENG H F , FENG X X ,et al. Short-term traffic flow prediction with Conv-LSTM[C]// 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017: 23-31.
|
[8] |
YAO H X , TANG X F , WEI H ,et al. Revisiting spatial-temporal similarity:a deep learning framework for traffic prediction[C]// The AAAI Conference on Artificial Intelligence, 201933 5668-5675.
|
[9] |
LI Y G , YU R , SHAHABI C ,et al. Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]// International Conference on Learning Representations. 2018.
|
[10] |
GENG X , LI Y G , WANG L Y ,et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]// The AAAI Conference on Artificial Intelligence. 2019,33 3656-3663.
|
[11] |
ZHAO L , SONG Y J , ZHANG C ,et al. T-GCN:a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-11.
|
[12] |
WU T L , CHEN F , WAN Y . Graph attention LSTM network:a new model for traffic flow forecasting[C]// 2018 5th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2018: 241-245.
|
[13] |
邓烜堃, 万良, 丁红卫 ,等. 基于深度学习的交通流量预测研究[J]. 计算机工程与应用, 2019,55(2): 234-241.
|
|
DENG X K , WAN L , DING H W ,et al. Research on traffic flow prediction based on deep learning[J]. Computer Engineering and Applications, 2019,55(2): 234-241.
|
[14] |
YU H Y , WU Z H , WANG S Q ,et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017,17(7):1501.
|
[15] |
YU B , YIN H T , ZHU Z X . Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[J]. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018: 297-322.
|
[16] |
冯宁, 郭晟楠, 宋超 ,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019,30(3): 759-769.
|
|
FENG N , GUO S N , SONG C ,et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019,30(3): 759-769.
|
[17] |
GUO S N , LIN Y F , FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// The AAAI Conference on Artificial Intelligence. 201933: 922-929.
|
[18] |
SONG C , LIN Y F , GUO S N ,et al. Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[C]// The AAAI Conference on Artificial Intelligence. 202034(1): 914-921.
|
[19] |
DIAO Z L , WANG X , ZHANG D F ,et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]// The AAAI Conference on Artificial Intelligence. 201933: 890-897.
|