[1] |
ZENG Y , WU Q Q , ZHANG R . Accessing from the sky,a tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019,107(12): 2327-2375.
|
[2] |
MOZAFFARI M , SAAD W , BENNIS M ,et al. Unmanned aerial vehicle with underlaid device-to-device communications,performance and tradeoffs[J]. IEEE Transactions on Wireless Communications, 2016,15(6): 3949-3963.
|
[3] |
SHARMA V , SRINIVASAN K , CHAO H C ,et al. Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage[J]. Journal of Network and Computer Applications, 2017,85: 94-105.
|
[4] |
NAQVI S A R , HASSAN S A , PERVAIZ H ,et al. Drone-aided communication as a key enabler for 5G and resilient public safety networks[J]. IEEE Communications Magazine, 2018,56(1): 36-42.
|
[5] |
FAN W L , WU Y , JU S H ,et al. Secure UAV communication with robust communication and trajectory design[C]// Proceedings of 2019 International Conference on Computer,Information and Telecommunication Systems (CITS). Piscataway,IEEE Press, 2019: 1-5.
|
[6] |
AL-HOURANI A , KANDEEPAN S , JAMALIPOUR A . Modeling air-to-ground path loss for low altitude platforms in urban environments[C]// Proceedings of 2014 IEEE Global Communications Conference. Piscataway,IEEE Press, 2014: 2898-2904.
|
[7] |
MU C X , ZHANG Y . Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(1): 259-273.
|
[8] |
ZHAN C , ZENG Y , ZHANG R . Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2018,7(3): 328-331.
|
[9] |
YANG D C , WU Q Q , ZENG Y ,et al. Energy tradeoff in ground-to-UAV communication via trajectory design[J]. IEEE Transactions on Vehicular Technology, 2018,67(7): 6721-6726.
|
[10] |
GHDIRI O , JAAFAR W , ALFATTANI S ,et al. Energy-efficient multi-UAV data collection for IoT networks with time deadlines[C]// Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway,IEEE Press, 2020: 1-6.
|
[11] |
ZENG Y , XU X L , ZHANG R . Trajectory design for completion time minimization in UAV-enabled multicasting[J]. IEEE Transactions on Wireless Communications, 2018,17(4): 2233-2246.
|
[12] |
FAN J Y , CUI M , ZHANG G C ,et al. Throughput improvement for multi-hop UAV relaying[J]. IEEE Access, 7: 147732-147742.
|
[13] |
LI J X , ZHAO H T , WANG H J ,et al. Joint optimization on trajectory,altitude,velocity,and link scheduling for minimum mission time in UAV-aided data collection[J]. IEEE Internet of Things Journal, 2020,7(2): 1464-1475.
|
[14] |
ZHAN C , HU H , SUI X F ,et al. Completion time and energy optimization in the UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2020,7(8): 7808-7822.
|
[15] |
YAO J J , ANSARI N . QoS-aware rechargeable UAV trajectory optimization for sensing service[C]// Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway,IEEE Press, 2019: 1-6.
|
[16] |
YAO J J , ANSARI N . QoS-aware power control in Internet of drones for data collection service[J]. IEEE Transactions on Vehicular Technology, 2019,68(7): 6649-6656.
|
[17] |
GOODFELLOW I , BENGIO Y , COURVILLE A . Deep learning[M]. Cambridge,MA,USA,MIT press, 2016.
|