[1] |
TANHA M , SAJJADI D , RUBY R ,et al. Traffic engineering enhancement by progressive migration to SDN[J]. IEEE Communications Letters, 2018,22(3): 438-441.
|
[2] |
ONGARO F , CERQUEIRA E , FOSCHINI L ,et al. Enhancing the quality level support for real-time multimedia applications in software-defined networks[C]// Proceedings of 2015 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2015: 505-509.
|
[3] |
ALIZADEH M , EDSALL T , DHARMAPURIKAR S ,et al. CONGA:distributed congestion-aware load balancing for datacenters[C]// Proceedings of the 2014 ACM conference on SIGCOMM. New York:ACM Press, 2014: 503-514.
|
[4] |
ZOU G B , LI T F , JIANG M ,et al. Deep TSQP:temporal-aware service QoS prediction via deep neural network and feature integration[J]. Knowledge-Based Systems, 2022,241:108062.
|
[5] |
CHEN J Y , WANG Y , HUANG X F ,et al. ALBLP:adaptive load-balancing architecture based on link-state prediction in software-defined networking[J]. Wireless Communications and Mobile Computing,2022, 2022:8354150.
|
[6] |
NUGRAHAB , MURTHYRN . Deep learning-based slow DDoS attack detection in SDN-based networks[C]// Proceedings of 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks. Piscataway:IEEE Press, 2020: 51-56.
|
[7] |
NOVAES M P , CARVALHO L F , LLORET J ,et al. Long short-term memory and fuzzy logic for anomaly detection and mitigation in software-defined network environment[J]. IEEE Access, 2020(8): 83765-83781.
|
[8] |
BHATIA J , DAVE R , BHAYANI H ,et al. SDN-based real-time urban traffic analysis in VANET environment[J]. Computer Communications, 2020,149: 162-175.
|
[9] |
TROIA S , ALVIZU R , MAIER G . Reinforcement learning for service function chain reconfiguration in NFV-SDN metro-core optical networks[J]. IEEE Access, 2019(7): 167944-167957.
|
[10] |
LIN S C , AKYILDIZ I F , WANG P ,et al. QoS-aware adaptive routing in multi-layer hierarchical software defined networks:a reinforcement learning approach[C]// Proceedings of 2016 IEEE International Conference on Services Computing. Piscataway:IEEE Press, 2016: 25-33.
|
[11] |
YOUNUS M U , KHAN M K , ANJUM M R ,et al. Optimizing the lifetime of software defined wireless sensor network via reinforcement learning[J]. IEEE Access, 2020(9): 259-272.
|
[12] |
CASAS-VELASCO D M , RENDON O M C , DA FONSECA N L S . Intelligent routing based on reinforcement learning for software-defined networking[J]. IEEE Transactions on Network and Service Management, 2021,18(1): 870-881.
|
[13] |
AL-JAWAD A , COM?A I S , SHAH P ,et al. An innovative reinforcement learning-based framework for quality of service provisioning over multimedia-based SDN environments[J]. IEEE Transactions on Broadcasting, 2021,67(4): 851-867.
|
[14] |
XU Z Y , WU K , ZHANG W Y ,et al. PnP-DRL:a plug-and-play deep reinforcement learning approach for experience-driven networking[J]. IEEE Journal on Selected Areas in Communications, 2021,39(8): 2476-2486.
|
[15] |
LIU W X , CAI J , CHEN Q C ,et al. DRL-R:deep reinforcement learning approach for intelligent routing in software-defined data-center networks[J]. Journal of Network and Computer Applications, 2021,177:102865.
|
[16] |
HU Y X , LI Z Y , LAN J L ,et al. EARS:intelligence-driven experiential network architecture for automatic routing in software-defined networking[J]. China Communications, 2020,17(2): 149-162.
|
[17] |
BOUZIDI E H , OUTTAGARTS A , LANGAR R ,et al. Deep Q-network and traffic prediction based routing optimization in software defined networks[J]. Journal of Network and Computer Applications, 2021(192):103181.
|
[18] |
兰巨龙, 于倡和, 胡宇翔 ,等. 基于深度增强学习的软件定义网络路由优化机制[J]. 电子与信息学报, 2019,41(11): 2669-2674.
|
|
LAN J L , YU C H , HU Y X ,et al. A SDN routing optimization mechanism based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2019,41(11): 2669-2674.
|
[19] |
兰巨龙, 张学帅, 胡宇翔 ,等. 基于深度强化学习的软件定义网络QoS优化[J]. 通信学报, 2019,40(12): 60-67.
|
|
LAN J L , ZHANG X S , HU Y X ,et al. Software-defined networking QoS optimization based on deep reinforcement learning[J]. Journal on Communications, 2019,40(12): 60-67.
|
[20] |
MAI T L , YAO H P , ZHANG N ,et al. Transfer reinforcement learning aided distributed network slicing optimization in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022,18(6): 4308-4316.
|
[21] |
CHEN J Y , WANG Y , OU J T ,et al. ALBRL:automatic load-balancing architecture based on reinforcement learning in software-defined networking[J]. Wireless Communications and Mobile Computing,2022, 2022:3866143.
|
[22] |
FUJIMOTO S , VAN HOOF H , MEGER D ,et al. Addressing function approximation error in actor-critic methods[EB]. 2018.
|
[23] |
孙鹏浩, 兰巨龙, 申涓 ,等. 一种基于深度增强学习的智能路由技术[J]. 电子学报, 2020,48(11): 2170-2177.
|
|
SUN P H , LAN J L , SHEN J ,et al. An intelligent routing technology based on deep reinforcement learning[J]. Acta Electronica Sinica, 2020,48(11): 2170-2177.
|
[24] |
孙鹏浩, 兰巨龙, 申涓 ,等. 基于牵引控制的深度强化学习路由策略生成[J]. 计算机研究与发展, 2021,58(7): 1563-1572.
|
|
SUN P H , LAN J L , SHEN J ,et al. Pinning control-based routing policy generation using deep reinforcement learning[J]. Journal of Computer Research and Development, 2021,58(7): 1563-1572.
|
[25] |
PAN L , CAI Q P , HUANG L B . Softmax deep double deterministic policy gradients[J]. Advances in Neural Information Processing Systems, 2020(33): 11767-11777.
|
[26] |
KHAN A A , ZAFRULLAH M , HUSSAIN M ,et al. Performance analysis of OSPF and hybrid networks[C]// Proceedings of 2017 International Symposium on Wireless Systems and Networks (ISWSN). Piscataway:IEEE Press, 2017: 1-4.
|
[27] |
CHIESA M , KINDLER G , SCHAPIRA M . Traffic engineering with equal-cost-multipath:an algorithmic perspective[J]. IEEE/ACM Transactions on Networking, 2017,25(2): 779-792.
|
[28] |
SUN P H , GUO Z H , LI J F ,et al. Enabling scalable routing in software-defined networks with deep reinforcement learning on critical nodes[J]. IEEE/ACM Transactions on Networking, 2022,30(2): 629-640.
|
[29] |
SUN P H , LAN J L , LI J F ,et al. A scalable deep reinforcement learning approach for traffic engineering based on link control[J]. IEEE Communications Letters, 2021,25(1): 171-175.
|
[30] |
National Science Foundation. National science foundation network[EB]. 2022.
|