[1] |
IMT-2030 (6G) 推进组. 6G总体愿景与潜在关键技术白皮书[R]. 2021.
|
|
IMT-2030 (6G) Promotion Group. 6G overall vision and potential key technologies white paper[R]. 2021.
|
[2] |
YOU X H , WANG C X , HUANG J ,et al. Towards 6G wireless communication networks:vision,enabling technologies,and new paradigm shifts[J]. Science China Information Sciences, 2021,64(1): 110301.
|
[3] |
ROST P , BANCHS A , BERBERANA I ,et al. Mobile network architecture evolution toward 5G[J]. IEEE Communications Magazine, 2016,54(5): 84-91.
|
[4] |
张平, 张建华, 戚琦 ,等. Ubiquitous-X:构建未来6G网络[J]. 中国科学:信息科学, 2020,50(6): 913-930.
|
|
ZHANG P , ZHANG J H , QI Q ,et al. Ubiquitous-X:constructing the future 6G networks[J]. Scientia Sinica (Informationis), 2020,50(6): 913-930.
|
[5] |
牛志升, 周盛, 周世东 ,等. 能效与资源优化的超蜂窝移动通信系统新架构及其技术挑战[J]. 中国科学:信息科学, 2012,42(10): 1191-1203.
|
|
NIU Z S , ZHOU S , ZHOU S D ,et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges[J]. Scientia Sinica (Informationis), 2012,42(10): 1191-1203.
|
[6] |
李莉, 彭木根, 王文博 . 下一代宽带移动通信系统中的网络自组织技术[J]. 电信技术, 2010(5): 71-73.
|
|
LI L , PENG M G , WANG W B . Network self-organization technology in the next generation broadband mobile communication system[J]. Telecommunications Technology, 2010(5): 71-73.
|
[7] |
ZHANG P , TAO X F , ZHANG J H ,et al. A vision from the future:beyond 3G TDD[J]. IEEE Communications Magazine, 2005,43(1): 38-44.
|
[8] |
ZHOU S , ZHAO T , NIU Z S ,et al. Software-defined hyper-cellular architecture for green and elastic wireless access[J]. IEEE Communications Magazine, 2016,54(1): 12-19.
|
[9] |
中国移动通信研究院. C-RAN白皮书:迈向5G C-RAN:需求、架构与挑战[R]. 2016.
|
|
China Mobile Communication Research Institute. C-RAN white paper:towards 5G C-RAN:requirements,architecture and challenges[R]. 2016.
|
[10] |
HUQKMS , MUMTAZS , RODRIGUEZ J . A C-RAN approach for 5G applications[M]// Backhauling/Fronthauling for Future Wireless Systems. Chichester: John Wiley & Sons,Ltd, 2016: 9-28.
|
[11] |
DALLA-COSTAA G , BONDAN L , WICKBOLDTJ A ,et al. Orchestra:a customizable split-aware NFV orchestrator for dynamic cloud radio access networks[J]. IEEE Journal on Selected Areas in Communications, 2020,38(6): 1014-1024.
|
[12] |
PENG M G , YAN S , ZHANG K C ,et al. Fog-computing-based radio access networks:issues and challenges[J]. IEEE Network, 2016,30(4): 46-53.
|
[13] |
刘晨熙, 刘炳宏, 张贤 ,等. 面向智能服务的雾无线接入网络:原理、技术与挑战[J]. 智能科学与技术学报, 2021,3(1): 10-17.
|
|
LIU C X , LIU B H , ZHANG X ,et al. Intelligent service oriented fog radio access network:principles,technologies and challenges[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(1): 10-17.
|
[14] |
NGO H Q , ASHIKHMIN A , YANG H ,et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017,16(3): 1834-1850.
|
[15] |
ZHANG J Y , CHEN S F , LIN Y ,et al. Cell-free massive MIMO:anew next-generation paradigm[J]. IEEE Access, 2019,7: 99878-99888.
|
[16] |
JIANG W , HAN B , HABIBIM A ,et al. The road towards 6G:a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021,2: 334-366.
|
[17] |
BHUSHAN N , LI J Y , MALLADI D ,et al. Network densification:the dominant theme for wireless evolution into 5G[J]. IEEE Communications Magazine, 2014,52(2): 82-89.
|
[18] |
CHECKO A , CHRISTIANSEN H L , YAN Y ,et al. Cloud RAN for mobile networks—a technology overview[J]. IEEE Communications Surveys & Tutorials, 2015,17(1): 405-426.
|
[19] |
NGO H Q , ASHIKHMINA , YANG H ,et al. Cell-free massive MIMO:uniformly great service for everyone[C]// Proceedings of 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2015: 201-205.
|
[20] |
BUZZIS D’ANDREA C . Cell-free massive MIMO:user-centric approach[J]. IEEE Wireless Communications Letters, 2017,6(6): 706-709.
|
[21] |
XIE Z W , LIU J Y , SHENG M ,et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications, 2021,28(5): 50-58.
|
[22] |
3GPP. Overall procedures in gNB-CU/gNB-DU architecture[S]. 2018.
|
[23] |
3GPP. Base station (BS) radio transmission and reception[S]. 2021.
|
[24] |
DING M , WANG P , LóPEZ-PéREZ D , ,et al. Performance impact of LoS and NLoS transmissions in dense cellular networks[J]. IEEE Transactions on Wireless Communications, 2016,15(3): 2365-2380.
|
[25] |
LIU J Y , SHENG M , LIU L ,et al. Performance of small cell networks under multi-slope bounded path loss model:from sparse to ultradensedeployment[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 11022-11034.
|
[26] |
DAI Y P , LIUJY , SHENG M ,et al. Joint optimization of BS clustering and power control for NOMA-enabled CoMP transmission in dense cellular networks[J]. IEEE Transactions on Vehicular Technology, 2021,70(2): 1924-1937.
|
[27] |
CHEN S Y , LIUXQ , ZHAO T Y ,et al. Performance analysis of joint transmission schemes in ultra-dense networks–A unified approach[J]. IEEE/ACM Transactions on Networking, 2020,28(1): 154-167.
|
[28] |
GARCíA-MORALESJ , FEMENIASG RIERA-PALOU F . Energy-efficient access-point sleep-mode techniques for cell-free mmWave massive MIMO networks with non-uniform spatial traffic density[J]. IEEE Access, 2020,8: 137587-137605.
|
[29] |
LóPEZ-PéREZ D , DE DOMENICO A , PIOVESAN N ,et al. A survey on 5G radio access network energy efficiency:massive MIMO,lean carrier design,sleep modes,and machine learning[J]. IEEE Communications Surveys & Tutorials, 2022,24(1): 653-697.
|
[30] |
陈新颖, 盛敏, 李博 ,等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022,44(3): 781-789.
|
|
CHEN X Y , SHENG M , LI B ,et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022,44(3): 781-789.
|
[31] |
闫实, 彭木根, 王文博 . 通信-感知-计算融合:6G愿景与关键技术[J]. 北京邮电大学学报, 2021,44(4): 1-11.
|
|
YAN S , PENG M G , WANG W B . Integration of communication,sensing and computing:the vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(4): 1-11.
|
[32] |
段晓东, 姚惠娟, 付月霞 ,等. 面向算网一体化演进的算力网络技术[J]. 电信科学, 2021,37(10): 76-85.
|
|
DUAN X D , YAO H J , FU Y X ,et al. Computing force network technologies for computing and network integration evolution[J]. Telecommunications Science, 2021,37(10): 76-85.
|
[33] |
WANG H , LIU C , SHI Z ,et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020,9(11): 1808-1811.
|
[34] |
LI Z D , CHEN W , WU Q Q ,et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022,21(3): 2019-2033.
|
[35] |
ZHANG S J , JIN S , WEN C K ,et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018,15(12): 49-54.
|
[36] |
HAN S F , CHIH-LIN I , XU Z K ,et al. Reference signals design for hybrid analog and digital beamforming[J]. IEEE Communications Letters, 2014,18(7): 1191-1193.
|
[37] |
YOUNIS O , FAHMY S . HEE D:a hybrid,energy-efficient,distributed clustering approach for ad hoc sensor networks[J]. IEEE Transactions on Mobile Computing, 2004,3(4): 366-379.
|