大数据 ›› 2015, Vol. 1 ›› Issue (1): 17-26.doi: 10.11959/j.issn.2096-0271.2015.01.002

• 聚焦 • 上一篇    下一篇

从系统角度审视大数据计算

郑纬民   

  1. 清华大学计算机科学与技术系 北京 100084
  • 修回日期:2016-05-06 出版日期:2015-05-20 发布日期:2020-09-28
  • 作者简介:郑纬民,男,清华大学教授、博士生导师,中国计算机学会理事长,目前主要从事并行与分布式计算、存储系统的研究工作,主持和参与多项国家“973”计划、“863”计划、国家自然科学基金项目。近年来在IEEE TC/IEEE TPDS/ACM TOS/FAST等本领域顶级期刊与国际会议发表论文40余篇。
  • 基金资助:
    国家重点基础研究发展计划(“973”计划)(2014CB340402);国家自然科学基金资助项目(61170008,61272055)

Reviewing Big Data Computation from a System Perspective

Weiming Zheng   

  1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
  • Revised:2016-05-06 Online:2015-05-20 Published:2020-09-28
  • Supported by:
    The National Basic Research Program of China(973 Program)(2014CB340402);The National Natural Science Foundation of China(61170008,61272055)

摘要:

大数据计算是实现大数据“巨大价值”的必要手段,而计算系统是大数据计算的有效载体。试着从系统角度审视大数据计算,透过大数据的体量巨大、速度极快、模态多样、真伪难辨等宏观特征,针对批量计算、流式计算、大图计算等计算形式,分别探讨大数据计算的典型特征,论述了这些特征给大数据计算系统的设计与实现带来的技术挑战,进而梳理了为了应对这些挑战所取得的研究成果,最后从系统角度指出未来大数据计算可能的一些研究方向。

关键词: 大数据计算, 批量计算, 流式计算, 大图计算, 系统实例

Abstract:

Big data computing is a necessary way to acquire the “great value” behind the big data, and a computing system is an effective tool for big data computing. Big data computing from a system perspective was reviewed. Based on the fact that big data has the macro characteristics of huge volume, growing fast, complex structure, and quality disparity, the typical features of big data computing by analyzing batch computing, stream computing, and graph computing respectively, were discussed. These features may bring technical challenges to the design and implementation of big data computing system. The related works for overcoming these challenges were further categoried. In the end, some prospective research directions of big data computing from the system perspective were listed.

Key words: big data computing, batch computing, stream computing, graph computing, system instance

No Suggested Reading articles found!