[1] |
张潇飞 . 商业银行小微企业贷款信用风险研究[J]. 智富时代, 2015(2).
|
|
ZHANG X F . Research on credit risk of small and micro enterprise loans in commercial banks[J]. The Fortune Times, 2015(2).
|
[2] |
陈隆, 闫真宇, 邓舒仁 . 对当前小微企业融资问题的若干思考[J]. 浙江金融, 2018(1): 17-23.
|
|
CHEN L , YAN Z Y , DENG S R . Reflections on current financing problems of small and micro enterprises[J]. Zhejiang Finance, 2018(1): 17-23.
|
[3] |
孙自通 . 小微企业信贷业务流程与法律实务[M]. 北京: 中华工商联合出版社, 2017.
|
|
SUN Z T . Small and micro enterprise credit business process and legal practice[M]. Beijing: All-China Federation of Industry and CommercePress, 2017.
|
[4] |
于沛丰 . 大数据金融破解小微企业融资难的分析[J]. 全国流通经济, 2018,2189(29): 88-89.
|
|
YU P F . Analysis of big data finance cracking the financing difficulties of small and micro enterprises[J]. China Circulation Economy, 2018,2189(29): 88-89.
|
[5] |
陈平, 王晓婷, 黄一朕 . 商业银行企业级反欺诈实践与趋势[J]. 中国银行业, 2017(11): 23-25.
|
|
CHEN P , WANG X T , HUANG Y Z . Commercial bank’s enterprise-level anti-fraud practice and trend[J]. China Banking, 2017(11): 23-25.
|
[6] |
丁濛濛 . 基于规则引擎的互联网金融反欺诈研究[J]. 电脑知识与技术, 2018,14(1): 1-3.
|
|
DING M M . Internet finance antifraud research based on rule engine[J]. Computer Knowledge and Technology, 2018,14(1): 1-3.
|
[7] |
仵伟强, 后其林 . 基于机器学习模型的消费金融反欺诈模型与方法[J]. 现代管理科学, 2018(10): 51-54.
|
|
WU W Q , HOU Q L . Consumer finance anti-fraud model and method based on machine learning model[J]. Modern Management Science, 2018(10): 51-54.
|
[8] |
何湘东, 魏吉勇 . B2B平台的反欺诈问题研究[J]. 信息安全与技术, 2016,7(11): 47-51.
|
|
HE X D , WEI J Y . Research on the B2B platform anti-fraud problem[J]. Information Security and Technology, 2016,7(11): 47-51.
|
[9] |
李苏, 周小惠, 宝哲 . 基于支持向量机的商业银行对中小信贷企业选择方法的研究[J]. 数学的实践与认识, 2018(11): 299-305.
|
|
LI S , ZHOU X H , BAO Z . Research of loan enterprise selection for bank based on support vector machine[J]. Mathematics in Practice and Theory, 2018(11): 299-305.
|
[10] |
张杰, 赵峰 . 基于支持向量机的中小企业技术信贷违约预测[J]. 统计与决策, 2013(20): 66-69.
|
|
ZHANG J , ZHAO F . SME technology credit default forecast based on support vector machine[J]. Statistics and Decision, 2013(20): 66-69.
|
[11] |
邱耀, 杨国为 . 基于XGBoost算法的用户行为预测与风险分析[J]. 工业控制计算机, 2018,31(9): 47-48.
|
|
QIU Y , YANG G W . User behavior prediction and risk analysis based on XGBoost algorithmv[J]. Industrial Control Computer, 2018,31(9): 47-48.
|
[12] |
陈俊清 . 神经网络模型在互联网金融反欺诈领域的研究与实践[J]. 中国金融电脑, 2016(8): 42-46.
|
|
CHEN J Q . Research and practice of neural network model in the field of internet financial anti-fraud[J]. Financial Computer of China, 2016(8): 42-46.
|
[13] |
胡鹏飞 . 金融科技在互联网金融行业性风险防范领域的应用[J]. 大数据, 2018,4(1): 117-123.
|
|
HU P F . Application of FinTech in internet financial industry risk prevention[J]. Big Data Research, 2018,4(1): 117-123.
|
[14] |
樊盛博 . 金融社交网络在伪卡欺诈发现中的应用研究[J]. 中国金融电脑, 2017(3): 65-71.
|
|
FAN S B . Research on the application of financial social network in the detection of pseudo-card fraud[J]. Financial Computer of China, 2017(3): 65-71.
|
[15] |
BEUTEL A , AKOGLU L , FALOUTSOS C . Fraud detection through graph-based user behavior modeling[C]// The 22nd ACM SIGSAC Conference on Computer and Communications Security,October 12-16,2015,Denver,USA. New York:ACM Press, 2015: 1696-1697.
|
[16] |
PEROZZI B , AL-RFOU R , SKIENA S . DeepWalk:online learning of social representations[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 24-27,2014,New York,USA. New York:ACM Press, 2014: 701-710.
|
[17] |
GROVER A , LESKOVEC J . Node2vec:scalable feature learning for networks[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,August 13-17,2016,San Francisco,USA. New York:ACM Press, 2016: 855-864.
|
[18] |
TANG J , QU M , WANG M ,et al. LINE:large-scale information network embedding[C]// The 24th International Conference on World Wide Web,May 18-22,2015,Florence,Italy.[S.l.:s.n. ], 2015: 1067-1077.
|
[19] |
DONG Y , CHAWLA N V , SWAMI A ,et al. Metapath2vec:scalable representation learning for heterogeneous networks[C]// The 23rd ACM SIGKDD International Conference on Knowledge Discovery& Data Mining,August 13-17,2017,Halifax,Canada. New York:ACM Press, 2017: 135-144.
|
[20] |
NEVILLE J . Iterative classification[M]. Heidelberg: SpringerPress, 2000.
|
[21] |
KE G , MENG Q , FINLEY T ,et al. Lightgbm:a highly efficient gradient boosting decision tree[C]// The 31st Conference on Neural Information Processing Systems,December 4-9,2017,Long Beach,USA.[S.l.:s.n. ], 2017: 3146-3154.
|
[22] |
SNOEK J , LAROCHELLE H , ADAMS R P . Practical bayesian optimization of machine learning algorithms[C]// The 25th International Conference on Neural Information Processing Systems,December 3-6,2012,Lake Tahoe,USA.Miami:Curran Associates Inc. , 2012: 2951-2959.
|