[1] |
张洁, 秦威, 鲍劲松 ,等. 制造业大数据[M]. 上海: 上海科学技术出版社, 2016.
|
|
ZHANG J , QIN W , BAO J S ,et al. Big data in manufacturing industry[M]. Shanghai: Shanghai Scientific & Technical PublishersPress, 2016.
|
[2] |
工业互联网产业联盟工业大数据特设组.工业大数据技术与应用实践[M]. 北京: 电子工业出版社, 2017.
|
|
Industrial Big Data Task Group in Alliance of Industrial Internet. Industrial big data technology and application practice[M]. Beijing: Publishing House of Electronics IndustryPress, 2017.
|
[3] |
国家制造强国建设战略咨询委员会.《中国制造2025》重点领域技术路线图[Z]. 北京: 2015.
|
|
National Manufacturing Strategy Advisory Committee. “Made in China 2025” technology roadmap for key areas[Z]. Beijing: 2015.
|
[4] |
工业互联网产业联盟.中国工业大数据技术与应用白皮书[Z]. 北京: 2017.
|
|
Alliance of Industry Internet. White paper on big data technology and application in China’s industry[Z]. Beijing: 2017.
|
[5] |
王建民 . 工业大数据技术综述[J]. 大数据, 2017,3(6): 3-14.
|
|
WANG J M . Survey on industrial big data[J]. Big Data Research, 2017,3(6): 3-14.
|
[6] |
TANG Y , XIE Y , YANG X ,et al. Tensor multi-elastic kernel self-paced learning for time series clustering[J]. IEEE Transactions on Knowledge and Data Engineering,2019:10.1109/TKDE.2019.2937027,
|
[7] |
RAWASSIZADEH R , MOMENI E , DOBBINS C ,et al. Scalable daily human behavioral pattern mining from multivariate temporal data[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(11): 3098-3112.
|
[8] |
ZHAO J , ITTI L . Classifying time series using local descriptors with hybrid sampling[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(3): 623-637.
|
[9] |
GONZáLEZ-VIDAL A , BARNAGHI P , SKARMETA A F . BEATS:blocks of eigenvalues algorithm for time series segmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(11): 2051-2064.
|
[10] |
YAGOUBI D , AKBARINIA R , MASSEGLIA F ,et al. Massively distributed time series indexing and querying[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,32(1): 108-120.
|
[11] |
LIU C , ZHANG K , XIONG H ,et al. Temporal sclerotization on sequential data:patterns,categorization,and visualization[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(1): 211-223.
|
[12] |
AGRAWAL S , STEINBACH M , BOLEY D ,et al. Mining novel multivariate relationships in time series data using correlation networks[J]. IEEE Transactions on Knowledge and Data Engineering,2019:10.1109/TKDE.2019.2911681,
|
[13] |
BATU B B , TEMIZEL T T , DüZGüN H ? . A non-parametric algorithm for discovering triggering patterns of spatio-temporal event types[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(12): 2629-2642.
|
[14] |
HAN M , FENG S , CHEN C L P ,et al. Structured manifold broad learning system:a manifold perspective for large-scale chaotic time series analysis and prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(9): 1809-1821.
|
[15] |
MALENSEK M , PALLICKARA S , PALLICKARA S . Analytic queries over geospatial time-series data using distributed hash tables[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(6): 1408-1422.
|
[16] |
HAO Y , CAO H , MUEEN A ,et al. Identify significant phenomenon-specific variables for multivariate time series[J]. IEEE Transactions on Knowledge and Data Engineering,2019:10.1109/TKDE.2019.2934464,
|
[17] |
CHEN D,TANG Y , ZHANG H , et a l . Incremental factorization of big time series data with blind factor approximation[J]. IEEE Transactions on Knowledge and Data Engineering,2019:10.1109/TKDE.2019.2931687.
|
[18] |
CHU X , ILYAS I F , KRISHNAN S ,et al. Data cleaning:overview and emerging challenges[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 2201-2206.
|
[19] |
李杰, 倪军, 王安正 . 从大数据到智能制造[M]. 上海: 上海交通大学出版社, 2017.
|
|
LI J , NI J , WANG A Z . From big data to intelligent manufacturing[M]. Shanghai: Shanghai Jiao Tong University PressPress, 2017.
|
[20] |
LIU Y , LI Z , ZHOU C ,et al. Generative adversarial active learning for unsupervised outlier detection[J].. IEEE Transactions on Knowledge and Data Engineering,2019 Accepted.
|
[21] |
HU W , GAO J , LI B ,et al. Anomaly detection using local kernel density estimation and context-based regression[J]. IEEE Transactions on Knowledge and Data Engineering,2018:10.1109/TKDE.2018.2882404.
|
[22] |
SHARMA V , KUMAR R , CHENG W ,et al. NHAD:neuro-fuzzy based horizontal anomaly detection in online social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(11): 2171-2184.
|
[23] |
LU Y , CHEN F , WANG Y ,et al. Discovering anomalies on mixed-type data using a generalized student-t based approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(10): 2582-2595.
|
[24] |
LIN X , PENG Y , CHOI B ,et al. Humanpowered data cleaning for probabilistic reachability queries on uncertain graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(7): 1452-1465.
|
[25] |
HAO S , TANG N , LI G ,et al. A novel cost-based model for data repairing[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(4): 727-742.
|
[26] |
DASU T , LOH J M . Statistical distortion:consequences of data cleaning[J]. Proceedings of the VLDB Endowment, 2012,5(11): 1674-1683.
|
[27] |
BOHANNON P , FAN W , FLASTER M ,et al. A cost-based model and effective heuristic for repairing constraints by value modification[C]// The 2005 ACM SIGMOD International Conference on Management of Data,June 14-16,2005,Baltimore,Maryland. New York:ACM Press, 2005: 143-154.
|
[28] |
SONG S , ZHU H , WANG J . Constraintvariance tolerant data repairing[C]// The 2016 International Conference on Management of Data,June 26–July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 877-892.
|
[29] |
LI Z , WANG H , SHAO W ,et al. Repairing data through regular expressions[J]. Proceedings of the VLDB Endowment, 2016,9(5): 432-443.
|
[30] |
KHAYYAT Z , ILYAS I F , JINDAL A ,et al. Bigdansing:a system for big data cleansing[C]// The 2015 ACM SIGMOD International Conference on Management of Data,May 31-June 4,2015,Melbourne,Australia. New York:ACM Press, 2015: 1215-1230.
|
[31] |
JENSEN S K , PEDERSEN T B , THOMSEN C . Time series management systems:a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(11): 2581-2600.
|
[32] |
苏卫星, 朱云龙, 刘芳 ,等. 时间序列异常点及突变点的检测算法[J]. 计算机研究与发展, 2014,51(4): 781-788.
|
|
SU W X , ZHU Y L , LIU F ,et al. Outliers and change-points detection algorithm for time series[J]. Journal of Computer Research and Development, 2014,51(4): 781-788.
|
[33] |
SALEHI M , LECKIE C , BEZDEK J C ,et al. Fast memory efficient local outlier detection in data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(12): 3246-3260.
|
[34] |
CAO L , YANG D , WANG Q ,et al. Scalable distance-based outlier detection over high-volume data streams[C]// 2014 IEEE 30th International Conference on Data Engineering,March 31-April 4,2014,Chicago,USA. Piscataway:IEEE Press, 2014: 76-87.
|
[35] |
YANG F , SONG H A , LIU Z ,et al. Ares:automatic disaggregation of historical data[C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE),April 16-19,2018,Paris,France. Piscataway:IEEE Press, 2018: 65-76.
|
[36] |
AROUS I , KHAYATI M , CUDRéMAUROUX P , .et al RecovDB:accurate and efficient missing blocks recovery for large time series[C]// 2019 IEEE 35th International Conference on Data Engineering (ICDE),April 8-11,2019,Macao,China. Piscataway:IEEE Press, 2019: 1976-1979.
|
[37] |
WU S , WANG L , WU T ,et al. Hankel matrix factorization for tagged time series to recover missing values during blackouts[C]// 2019 IEEE 35th International Conference on Data Engineering (ICDE),April 8-11,2019,Macao,China. Piscataway:IEEE Press, 2019: 1654-1657.
|
[38] |
FENG K , GUO T , CONG G ,et al. SURGE:continuous detection of bursty regions over a stream of spatial objects[C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE),April 16-19,2018,Paris,France. Piscataway:IEEE Press, 2018: 1292-1295.
|
[39] |
MA M , ZHANG S , PEI D ,et al. Robust and rapid adaption for concept drift in software system anomaly detection[C]// 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE),October 15-18,2018,Memphis,USA. Piscataway:IEEE Press, 2018: 13-24
|
[40] |
MEI J , DE CASTRO Y , GOUDE Y ,et al. Nonnegative matrix factorization with side information for time series recovery and prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(3): 493-506.
|
[41] |
RONG K , BAILIS P . ASAP:prioritizing attention via time series smoothing[J]. Proceedings of the VLDB Endowment, 2017,10(11): 1358-1369.
|
[42] |
YOON S , LEE J G , LEE B S . NETS:extremely fast outlier detection from a data stream via set-based processing[J]. Proceedings of the VLDB Endowment, 2019,12(11): 1303-1315.
|
[43] |
SONG S , ZHAO A , WANG J ,et al. SCREEN:stream data cleaning under speed constraints[C]// ACM SIGMOD International Conference on Management of Data,May 31-June 4,2015,Amsterdam,The Netherlands. New York:ACM Press, 2015.
|
[44] |
ZHANG A , SONG S , WANG J . Sequential data cleaning:a statistical approach[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 909-924.
|
[45] |
YIN W , YUE T , WANG H ,et al. Time series cleaning under variance constraints[C]// International Conference on Database Systems for Advanced Applications,May 21-24,2018,Gold Coast,Australia. Heidelberg:Springer, 2018.
|
[46] |
SADIK S , GRUENWALD L , LEAL E . Wadjet:finding outliers in multiple multi-dimensional heterogeneous data streams[C]// 2018 IEEE 34th International Conference on Data Engineering (ICDE),April 16-19,2018,Paris,France. Piscataway:IEEE Press, 2018: 1232-1235.
|
[47] |
SONG S , CAO Y , WANG J . Cleaning timestamps with temporal constraints[J]. Proceedings of the VLDB Endowment, 2016,9(10): 708-719.
|
[48] |
ABEDJAN Z , AKCORA C G , OUZZANI M ,et al. Temporal rules discovery for web data cleaning[J]. Proceedings of the VLDB Endowment, 2015,9(4): 336-347.
|
[49] |
陈乾, 胡谷雨, 路威 . 基于距离和DF-RLS的时间序列异常检测[J]. 计算机工程, 2012,38(12): 32-35.
|
|
CHEN Q , HU G Y , LU W . Outlier detection for time series based on distance and DF-RLS[J]. Computer Engineering, 2012,38(12): 32-35.
|
[50] |
MILANI M , ZHENG Z , CHIANG F . Current clean:spatio-temporal cleaning of stale data[C]// 2019 IEEE 35th International Conference on Data Engineering (ICDE),April 8-11,2019,Macao,China. Piscataway:IEEE Press, 2019: 172-183.
|
[51] |
ZAMENI M , GHAFOORI Z , SADRI A ,et al. Change point detection for streaming high-dimensional time series[C]// The 24th International Conference on Database Systems for Advanced Applications,April 22-25,Chiang Mai,Thailand. Heidelberg:Springer, 2019.
|
[52] |
SOUIDEN I , BRAHMI Z , LAFI L . Data stream mining based-outlier prediction for cloud computing[C]// The 33rd IEEE International Conference on Data Engineering,April 19-22,2017,San Diego,USA. Piscataway:IEEE Press, 2017.
|
[53] |
HAQUE A , KHAN L , BARON M ,et al. Efficient handling of concept drift and concept evolution over Stream Data[C]// 2016 IEEE 32nd International Conference on Data Engineering (ICDE),May 1620,2016,Helsinki,Finland. Piscataway:IEEE Press, 2016: 481-492.
|
[54] |
XU H , CHEN W , ZHAO N ,et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]// The 2018 Web Conference,April 23-27,2018,Lyon,France.[S.l.:s.n. ], 2018.
|
[55] |
MALHOTRA P , RAMAKRISHNAN A , ANAND G ,et al. LSTM-based encoderdecoder for multi-sensor anomaly detection[J]. Computer Science,2016,arXiv:1607.00148.,
|
[56] |
EICHMANN P , SOLLEZA F , TATBUL N ,et al. Visual exploration of time series anomalies with metro-viz[C]// The 2019 International Conference on Management of Data,June 30-July 5,2019,Amsterdam,Netherlands. New York:ACM Press, 2019: 1901-1904.
|