[1] |
YANN L , YOSHUA B , GEOFFREY H . Deep learning[J]. Nature, 2015,521: 436-444.
|
[2] |
ATTARDI G , . DeepNL:a deep learning NLP pipeline[C]// Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing.[S.l.:s.n.], 2015: 109-115.
|
[3] |
VOULODIMOS A , DOULAMIS N , DOULAMIS A ,et al. Deep learning for computer vision:a brief review[J]. Computational Intelligence and Neuroscience, 2018: 1-13.
|
[4] |
WANG C , BLEI D M . Collaborative topic modeling for recommending scientific articles[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.[S.l.:s.n.], 2011: 448-456.
|
[5] |
ZHANG S , TONG H H , XU J J ,et al. Graph convolutional networks:a comprehensive review[J]. Computational Social Networks, 2019,6(11): 1-23.
|
[6] |
WALLACH H M , . Topic modeling:beyond bag-of-words[C]// Proceedings of the 23rd International Conference on Machine Learning.[S.l.:s.n.], 2006: 977-984.
|
[7] |
BHAT H S , HUANG L H , RODRIGUEZ S ,et al. Citation prediction using diverse features[C]// Proceedings of 2015 IEEE International Conference on Data Mining Workshop. Piscataway:IEEE Press, 2015: 589-596.
|
[8] |
MORADI B , PARENT M C , WEIS A S ,et al. Mapping the travels of intersectionality scholarship:a citation network analysis[J]. Psychology of Women Quarterly, 2020,44(2): 151-169.
|
[9] |
LIU L S , YU D J , WANG D J ,et al. Citation count prediction based on neural hawkes model[J]. IEICE Transactions on Information and Systems, 2020,103(11): 2379-2388.
|
[10] |
JEONG C , JANG S , PARK E ,et al. A context-aware citation recommendation model with BERT and graph convolutional networks[J]. Scientometrics, 2020,124(3): 1907-1922.
|
[11] |
GROVER A , LESKOVEC J . node2vec:scalable feature learning for networks[C]// Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and Data Mining.[S.l.:s.n.], 2016: 855-864.
|
[12] |
CHAMI I , YING R , RE C ,et al. Hyperbolic graph convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2019,32: 4869-4880.
|
[13] |
LEE J , LEE J N , SHIN H . The long tail or the short tail:the category-specific impact of eWOM on sales distribution[J]. Decision Support Systems, 2011,51(3): 466-479.
|
[14] |
YANG C , LIU Z , ZHAO D ,et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence.[S.l.:s.n.], 2015: 2111-2117.
|
[15] |
YUE X , WANG Z , HUANG J G ,et al. Graph embedding on biomedical networks:methods,applications and evaluations[J]. Bioinformatics, 2020,36(4): 1241-1251.
|
[16] |
ASHOOR H , CHEN X W , ROSIKIEWICZ W ,et al. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data[J]. Nature Communications, 2020,11:1173.
|
[17] |
PEROZZI B , AL-RFOU R , SKIENA S . DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2014: 701-710.
|
[18] |
TANG J , QU M , WANG M Z ,et al. LINE:large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web.[S.l.:s.n.], 2015: 1067-1077.
|
[19] |
KIPF T N , WELLING M . Semisupervised classification with graph convolutional networks[C]// Proceedings of the International Conference on Learning Representation.[S.l.:s.n.], 2017: 1-8.
|
[20] |
GILMER J , SCHOENHOLZ S S , RILEY P F ,et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning.[S.l.:s.n.], 2017: 1263-1272.
|
[21] |
BOSCAINI D , MASCI J , RODOLA E ,et al. Learning shape correspondence with anisotropic convolutional neural networks[C]// Proceedings of the 30th Conference on Neural Information Processing Systems.[S.l.:s.n.], 2016: 3189-3197.
|
[22] |
MONTI F , BOSCAINI D , MASCI J ,et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 5115-5124.
|
[23] |
KAWAMOTO T , TSUBAKI M , OBUCHI T . Mean-field theory of graph neural networks in graph partitioning[C]// Proceedings of the 32nd International Coference on Neural Information Processing Systems.Red Hook:Curran Associates Inc. , 2018: 4366-4376.
|
[24] |
WANG X , JI H , SHI C ,et al. Heterogeneous graph attention network[C]// Proceedings of the 28th International Conference on World Wide Web.[S.l.:s.n.], 2019: 2022-2032.
|
[25] |
VELICKOVIC P , CUCURULL G , CASANOVA A ,et al. Graph attention networks[C]// Proceedings of the International Conference on Learning Representations 2018.[S.l.:s.n.], 2018: 1-8.
|
[26] |
TIFREA A , BECIGNEUL G , GANEA O E . PoincaréGloVe:hyperbolic word embeddings[C]// Proceedings of the International Conference on Learning Representations 2019.[S.l.:s.n.], 2019: 1-8.
|
[27] |
DHINGRA B , SHALLUE C J , NOROUZI M ,et al. Embedding text in hyperbolic space[C]// Proceedings of the Association for Computational Linguistics.[S.l.:s.n.], 2018: 59-69.
|
[28] |
GANEA O , BECIGNEUL G , HOFMANN T . Hyperbolic neural networks[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems.[S.l.:s.n.], 2018: 5345-5355.
|
[29] |
LIU Q , NICKEL M , KIELA D . Hyperbolic graph neural networks[C]// Proceedings of the 33rd Conference on Neural Information Processing Systems.[S.l.:s.n.], 2019: 8230-8241.
|
[30] |
ASLAN S , KAYA M . Topic recommendation for authors as a link prediction problem[J]. Future Generation Computer Systems, 2018,89: 249-264.
|
[31] |
SONG W Z , CHEN H X , LIU X Y ,et al. Hyperbolic node embedding for signed networks[J]. Neurocomputing, 2021,421: 329-339.
|
[32] |
NICKEL M , KIELA D . Poincaré embeddings for learning hierarchical representations[C]// Proceedings of the 31st Conference on Neural Information Processing Systems.[S.l.:s.n.], 2017: 6338-6347.
|
[33] |
WEI C H , KAO H Y , LU Z Y . PubTator:a web-based text mining tool for assisting biocuration[J]. Nucleic Acids Research, 2013,41(W1): 518-522.
|