[1] BROCKWELL P J , DAVIS R A , BERGER J O , et al.
Time Series: Theory and Methods[M]. Berlin, Springer-Verlag, 2015: 2-35.
[2] 韩敏,任伟杰,李柏松,冯守渤.混沌时间序列分析与预测研究综述[J].信息与控制,2020,49(01):24-35.
HAN M, REN W ,LI B, et al. A Review of Chaotic Time Series Analysis and
Forecasting[J].Information and Control (Chinese),2020,49(01):24-35.
[3] PEARL J , GLYMOUR M , JEWELL N P . Causal Inference
in Statistics: A Primer [M]. New Jersey, John Wiley & Sons, 2016: 22-58.
[4] 任伟杰,韩敏.多元时间序列因果关系分析研究综述[J].自动化学报,2021,47(01):64-78.
REN W, HAN M. A review of causality analysis of multiple time
series[J].Acta Automation Sinica,2021,47(01):64-78.
[5] PARUNAK H . Elements of causal inference:
foundations and learning algorithms[J]. Computing reviews, 2018,
59(11):588-589.
[6] PEARL, J, MACKENZIE, D. The Book of Why: The New
Science of Cause and Effect [M]. London, Allen Lane Press, 2018: 126-155.
[7] YAO L , CHU Z , LI S , et al. A Survey on Causal
Inference[J]. ACM Transactions on Knowledge Discovery from Data, 2021,
15(5):1-46.
[8] SCHÖLKOPF B, LOCATELLO F, BAUER S, et. al. Toward Causal Representation Learning[C]//in Proceedings of the IEEE, 2021,
109(5), 612-634.
[9] GRANGER C , WIENER J. Investigating causal
relations by econometric models and cross-spectral methods[J], Econometrica,
1969, 37: 424-438.
[10] N. WIENER. The Theory of Prediction. I n Modern
Mathematics for Engineers[M].New York, NY, McGraw-Hill, 1956: 368-398.
[11] SETH A K, BARRETT A B, BARNETT L. Granger causality
analysis in neuroscience and neuroimaging[J]. The Journal of Neuroscience,
2015, 35(8): 3293−3297.
[12] AUGUSTINE C. ARIZE. Determinants of Income Velocity
in the United Kingdom: Multivariate Granger Causality [J].The American
Economist,1993, 37(2): 40–45.
[13] GEWEKE, JOHN. Measurement of Linear Dependence and
Feedback between Multiple Time Series[J]. Publications of the American
Statistical Association, 1982, 77(378):304-313.
[14] CRAIG, HIEMSTRA, JOHNATHAN, et al. Testing for
Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation[J].
The Journal of Finance, 1994, 49(5):1639-1664.
[15] ANCONA N , MARINAZZO D , STRAMAGLIA S . Radial
basis function approach to nonlinear Granger causality of time series[J]. Phys
Rev E Stat Nonlin Soft Matter Phys, 2004, 70(5 Pt 2):056221.
[16] WEI L , D MARINAZZO, PA N Z , et al. Kernel Granger
Causality Mapping Effective Connectivity on fMRI Data[J]. 2009,
28(11):1825-1835.
[17] ZHOU Y , KANG Z , LIN Z , et al. Causal analysis
for non-stationary time series in sensor-rich smart buildings[C]// Proceedings
of IEEE International Conference on Automation Science & Engineering. IEEE,
2013: 593-598.
[18] SCHAECK T , MUMA M , FENG M , et al. Robust
Nonlinear Causality Analysis of Non-Stationary Multivariate Physiological Time
Series[J]. IEEE Transactions on Biomedical Engineering, 2017, 65(6):1213-1225.
[19] WEI CHEN, JIBIN CHEN , RUICHU CAI , et al. Learning
granger causality for non-stationary Hawkes processes[J]. Neurocomputing, 2022,
468:22-32.
[20] SCHINDLER K . Granger Lasso Causal Models in Higher
Dimensions - Application to Gene Expression Regulatory Networks[C]// Proceedings
of Machine Learning and Knowledge Discovery in Databases European Conference.
2013: 1-14.
[21] YANG G , WANG L , WANG X . Reconstruction of
Complex Directional Networks with Group Lasso Nonlinear Conditional Granger
Causality[J]. Scientific Reports, 2017, 7(1):2991.
[22] BAHADORI, T., Y. LIU, Y. An Examination of
Large-Scale Granger Causality Inference[C]// Proceedings of SIAM Conference on
Data Mining (SDM’13),2013: 2301-2309.
[23] SCHREIBER, THOMAS. Measuring Information
Transfer[J]. Physical Review Letters, 2000, 85(2):461-464.
[24] BOSSOMAIER T , BARNETT L , M HARRÉ, et al. Transfer
Entropy[M]. Springer International Publishing, 2016.
[25] KRASKOV A , H STOEGBAUER, GRASSBERGER P .
Estimating Mutual Information[J].Physical Review E, 2004, 69:066138.
[26] STANIEK M , LEHNERTZ K . Symbolic Transfer
Entropy[J]. Physical Review Letters, 2008, 100(15):158101.
[27] KUGIUMTZIS D . Partial transfer entropy on rank
vectors[J]. European Physical Journal Special Topics, 2013, 222(2):401-420.
[28] RASHIDI B , ZHAO Q . Autonomous Root-Cause Fault
Diagnosis Using Symbolic Dynamic Based Causality Analysis[J]. Neurocomputing,
2020, 401(3):10-27.
[29] ZENG Z, JIN G, XU C, CHEN S, ZHANG L. Spacecraft
Telemetry Anomaly Detection Based on Parametric Causality and Double-Criteria
Drift Streaming Peaks over Threshold[J]. Applied Sciences, 2022; 12(4):1803.
[30] SUN J , BOLLT E M . Causation Entropy Identifies
Indirect Influences, Dominance of Neighbors and Anticipatory Couplings[J].
Physica D Nonlinear Phenomena, 2014, 267:49-57.
[31] 郝志峰, 谢蔚涛, 蔡瑞初,等. 基于因果强度的时序因果关系发现算法[J]. 计算机工程与设计, 2017, 38(1):6.
HAO ZF,
XIE WT, CAI RC, et al. Time-series causal relationship discovery algorithm
based on causal strength. Computer Engineering and Design, 2017, 38(1):6.
[32] LIZIER J , RUBINOV M . Multivariate construction of
effective computational networks from observational data[J]. Avian Diseases,
2012, 30(1):1-2.
[33] CHEN S , JIN G , MA X . Detection and Analysis of
Real-time Anomalies in Large-Scale Complex System[J]. Measurement,
2021(2):109929.
[34] BARNETT L , BARRETT A B , SETH A K . Granger
causality and transfer entropy are equivalent for Gaussian variables[J].
Physical Review Letters, 2009, 103.
[35] NEAPOLITAN R E . Learning Bayesian Networks[M].New Jersey,
Prentice Hall, 2003: 1-33.
[36] 张连文,郭海鹏. 贝叶斯网引论[M]. 北京:科学出版社, 2006.
Zhang L
W, Guo H P. Introduction to Bayesian Networks [M]. Beijing: Science Press,
2006.
[37] 蔡瑞初,郝志峰.大数据中的因果关系发现[M].北京:科学出版社,2018: 22-49.
CAI R H, HAO Z F. Causal Relationship Discovery in Big Data . Beijing:
Science Press, 2018: 22-49.
[38] SPIRTES P, GLYMOUR C , SCHEINES R. Causation,
Prediction, and Search[M]. Cambridge, MIT Press, 2000.
[39] MARKUS KALISCH, PETER BÜHLMANN. Estimating
High-Dimensional Directed Acyclic Graphs with the PC-Algorithm[J]. Journal of
Machine Learning Research, 2007, 8:613-636.
[40] VERMA T, PEARL J. Equivalence and synthesis of
causal models[C]// Proceedings of the 6th Conference on Uncertainty in
Artificial Intelligence. Cambridge, UK, 1990: 255-268.
[41] HUND L , SCHROEDER B . A causal perspective on
reliability assessment[J]. Reliability Engineering and System Safety, 2019,
195:106678.
[42] CHICKERING D M . Learning Equivalence Classes of
Bayesian Networks Structures[J]. arxiv:
1302/1302.3566.pdf, 2013.
[43] TSAMARDINOS I, BROWN L E, ALIFERIS C F. The max-min
hill-climbing Bayesian network structure learning algorithm[J]. Machine
Learning, 2006, 65(1): 31-78.
[44] TSAMARDINOS I, ALIFERIS C F, STATNIKOV A. Time and
sample efficient discovery of Markov blankets and direct causal
relations[C]//Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Washington, USA, 2003: 673-678.
[45] HUANG B , ZHANG K , ZHANG J , et al. Causal
Discovery from Heterogeneous/Nonstationary Data[J]. arXiv:1903.01672v5[cs.LG], 2019.
[46] SPIRTES P , MEEK C , RICHARDSON T . An Algorithm
for causal inference in the presence of latent variables and selection bias[J].
Computation Causation & Discovery, 2016:211-252.
[47] COLOMBO D, MAATHUIS M H, KALISCH M, et al. Learning
high-dimensional directed acyclic graphs with latent and selection
variables[J]. The Annals of Statistics, 2012, 40(1): 294-321.
[48] OGARRIO J M, SPIRTES P, RAMSEY J. A hybrid causal
search algorithm for latent variable models[C]//Proceedings of Conference on
Probabilistic Graphical Models. 2016: 368-379.
[49] KUMMERFELD E, RAMSEY J, YANG R, et al. Causal
clustering for 2-factor measurement models//Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD
2014). Nancy, France, 2014: 34-49.
[50] RUNGE J . Causal network reconstruction from time
series: From theoretical assumptions to practical estimation[J]. Chaos, 2018,
28(7):075310.
[51] RUNGE J , SEJDINOVIC D , FLAXMAN S . Detecting
causal associations in large nonlinear time series datasets[J]. arXiv:1702.07007v2 [stat.ME],2017.
[52] RUNGE J . Discovering contemporaneous and lagged
causal relations in autocorrelated nonlinear time series datasets[J]. arXiv:2003.03685v2 [stat.ME], 2020.
[53] SHIMIZU S, HOYER P O, HYVÄRINEN A, et al. A linear
non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning
Research, 2006, 7: 2003-2030.
[54] RUNGE J , BATHIANY S , BOLT E , et al. Inferring
causation from time series in Earth system sciences[J]. Nature Communications,
2019, 10(1).
[55] AAPO HYVÄRINEN,
HOYER P O , INKI M . Topographic ICA as a Model of Natural Image
Statistics[C]// Proceedings of IEEE International Workshop on Biologically
Motivated Computer Vision. Springer-Verlag, 2000: 83-88.
[56] SHIMIZU S, INAZUMI T, SOGAWA Y, et al.
DirectLiNGAM: A direct method for learning a linear non-gaussian structural
equation model[J]. Journal of Machine Learning Research, 2011, 12(2):
1225-1248.
[57] HOYER P O, JANZING D, MOOIJ J M, et al. Nonlinear
causal discovery with additive noise models[C]//Proceedings of the 23rd Annual
Conference on Neural Information Processing Systems (NIPS 2009). Vancouver,
Canada, 2009: 689-696.
[58] M. MOOIJ, D. JANZING, J. PETERS, AND B. SCHÖLKOPF.
Regression by dependence minimization and its application to causal
inference[C]// Proceedings of the 26thInternational Conference on
Machine Learning (ICML), 2009,: 745–752.
[59] NOWZOHOUR , P. BÜHLMANN. Score-based causal
learning in additive noise models[J]. Statistics, 2016, 50(3):471–485.
[60] ZHANG K, HYVÄRINEN A. On the identifiability of the
post-nonlinear causal model[C]//Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI 2009). Montreal, Canada, 2009:
647-655.
[61] TASHIRO T, SHIMIZU S, HYVÄRINEN A, et al. ParceLiNGAM:
A causal ordering method robust against latent confounders[J]. Neural
Computation, 2014, 26(1): 57-83.
[62] HOYER P O, SHIMIZU S, KERMINEN A J, et al.
Estimation of causal effects using linear non-Gaussian causal models with
hidden variables[J]. International Journal of Approximate Reasoning, 2008,
49(2): 362-378.
[63] CAI R, XIE F, GLYMOUR C, et al. Triad Constraints
for Learning Causal Structure of Latent Variables[C]//Advances in Neural
Information Processing Systems. 2019: 12863-12872.
[64] JANZING D, MOOIJ J, ZHANG KUN, et al.
Information-geometric approach to inferring causal directions[J]. Artificial
Intelligence, 2012, 182: 1-31.
[65] XIE F , CAI R , ZENG Y , et al. An Efficient
Entropy-Based Causal Discovery Method for Linear Structural Equation Models With
IID Noise Variables[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2019, PP(99):1-14.
[66] SUGIHARA G , MAY R , YE H , et al. Detecting
Causality in Complex Ecosystems[J]. Science, 2012, 338(6106):496-500.
[67] F TAKENS. Dynamical Systems and Turbulence [M].
NewYork, Springer-Verlag, 1981:67-88.
[68] ARNHOLD J , GRASSBERGER P , LEHNERTZ K , et al. A
Robust Method for Detecting Interdependences: Application to Intracranially
Recorded EEG[J]. Physica D-nonlinear Phenomena, 1999, 134(4):419-430.
[69] QUIROGA R Q , ARNHOLD J , GRASSBERGER P . Learning
driver-response relationships from synchronization patterns[J]. Physical
review. E, Statistical physics, plasmas, fluids, and related interdisciplinary
topics, 2000, 61(5 Pt A):5142-5148.
[70] ANDRZEJAK R G , KRASKOV A , STOGBAUER , et al.
Bivariate surrogate techniques: Necessity, strengths, and caveats[J]. Physical
Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(6):066202.
[71] CHICHARRO D , ANDRZEJAK R G . Reliable detection of
directional couplings using rank statistics[J]. Physical Review E Statal
Nonlinear & Soft Matter Physics, 2009, 80(2):026217.
[72] MAO X , SHANG P . Transfer entropy between
multivariate time series[J]. Communications in Nonlinear Science and Numerical
Simulation, 2016, 47:338-347.
[73] KRUG D , OSTERHAGE H , ELGER C E , et al.
Estimating nonlinear interdependences in dynamical systems using cellular
nonlinear networks.[J]. Physical Review E Statistical Nonlinear & Soft
Matter Physics, 2007, 76(4):041916.
[74] ANNA KRAKOVSKÁ, JOZEF JAKUBÍK. Implementation of
two causal methods based on predictions in reconstructed state spaces[J].
Physical Review E, 2020, 102:022203.
[75] CHEN S , JIN G , MA X . Satellite On-orbit Anomaly
Detection Method Based on a Dynamic Threshold and Causality Pruning[J]. IEEE
Access, 2021, PP(99):1-1.
[76] 张贵生. 数据驱动的金融时间序列预测模型研究[D].太原:山西大学,2016.
Zhang GS. Research on Data-Driven Financial Time Series Prediction Model
[D]. Taiyuan: Shanxi University, 2016.
[77] CHIMOBI, OMOKE, PHILIP. The causal Relationship
among Financial Development, Trade Openness and Economic Growth in Nigeria.[J].
International Journal of Economics & Finance, 2010,2(2):137-147.
[78] FIEDOR P . Causal Non-Linear Financial Networks[J].
Papers, arXiv:1407.5020v1[q-fin.ST] 2014.
[79] SEBRI M , BEN-SALHA O . On the causal dynamics
between economic growth, renewable energy consumption, CO2 emissions and trade
openness: Fresh evidence from BRICS countries[J]. Renewable & Sustainable
Energy Reviews, 2014, 39:14-23.
[80] JUDGE G . Adaptive Intelligent Behavior and Causal
Entropy Maximization as a Basis for Microeconomic Information Recovery[J]. SSRN
Electronic Journal, 2014. Available at SSRN: http://dx.doi.org/10.2139/ssrn.2463323.
[81] LIU A , CHEN J , YANG S Y , et al. The Flow of
Information in Trading: An Entropy Approach to Market Regimes[J]. Entropy,
2020, 22(9):1064.
[82] Sarkar M , Leong T Y . Characterization of medical
time series using fuzzy similarity-based fractal dimensions[J]. Artificial
Intelligence in Medicine, 2003, 27(2):201-222.
[83] WALTER L , FRANCISCO T , REDELICO F O , et al.
Analysis of ischaemic crisis using the informational causal entropy-complexity
plane[J]. Chaos, 2018, 28(7):075518-.
[84] STEPHAN K E , PENNY W D , MORAN R J , et al. Ten
simple rules for dynamic causal modeling[J]. Neuroimage, 2010, 49(
4):3099-3109.
[85] LEE J , NEMATI S ,
SILVA I , et al. Transfer Entropy Estimation and Directional Coupling
Change Detection in Biomedical Time Series[J]. BioMedical Engineering OnLine,
2012, 11(1):19.
[86] FAES L , MARINAZZO D , MONTALTO A , et al.
Lag-specific transfer entropy as a tool to assess cardiovascular and
cardiorespiratory information transfer[J]. IEEE transactions on bio-medical
engineering, 2014, 61(10):2556-68.
[87] VALENZA G , FAES L , CITI L , et al. Instantaneous
transfer entropy for the study of cardio-respiratory dynamics[C]// Proceedings
of Engineering in Medicine & Biology Society. IEEE, 2015:7885-7888.
[88] PEREZ-SUAY A, CAMPS-VALLS G. Causal inference in
geoscience and remote sensing from observational. Data[J]. IEEE Transactions on
Geoscience and Remote Sensing. 2018, 3: 1502–1513.
[89] SILVA F N , VEGA-OLIVEROS D A , YAN X , et al.
Detecting climate teleconnections with Granger causality[J]. https://doi.org/10.48550/arXiv.2012.03848, 2020.
[90] CONTRERAS-REYES J E , CAROLA HERNÁNDEZ-SANTORO.
Assessing Granger-Causality in the Southern Humboldt Current Ecosystem Using
Cross-Spectral Methods[J]. Entropy, 2020, 22(10):1071.
[91] LI J , CONVERTINO M . Inferring Ecosystem Networks
as Information Flows[J]. Scientific Reports, 2021, 11:7094.
[92] OH M , KIM S , LIM K , et al. Time series analysis
of the Antarctic Circumpolar Wave via symbolic transfer entropy[J]. Physica A
Statistical Mechanics & Its Applications, 2018, 499:233-240.
[93] 郑树泉,
覃海焕,
王倩.
工业大数据技术与架构[J].
大数据,
2017, 3(4):14.
Zheng S Q, Qin H H, Wang Q. Industrial Big Data Technology and Architecture
[J]. Big Data Research, 2017, 3(4):14.
[94] YU W , YANG F . Detection of Causality between
Process Variables Based on Industrial Alarm Data Using Transfer Entropy[J].
Entropy, 2015, 17(8):5868-5887.
[95] SHI D , GUO Z , JOHANSSON K H , et al. Causality
Countermeasures for Anomaly Detection in Cyber-Physical Systems[J]. IEEE
Transactions on Automatic Control, 2017, 63(2):386-401.
[96] ZENG Z, JIN G,XU C, et al. Satellite Telemetry Data
Anomaly Detection Using Causal Network and Feature-Attention-based LSTM [J],
IEEE Transactions on Instrumentation and Measurement, 2022, Early Access, doi:10.1109/TIM.2022.3151930.
[97] YAO C Z , LIN J N , LIN Q W , et al. A study of
causality structure and dynamics in industrial electricity consumption based on
Granger network[J]. Physica A: Statistical Mechanics and its Applications,
2016, 462:297-320.
[98] YOSHIDA T , NAKADAI K . Active audio-visual
integration for Voice Activity Detection based on a Causal Bayesian
Network[C]// Proceedings of IEEE-RAS International Conference on Humanoid
Robots. IEEE, 2013:370-375.
[99] TIAN C , ZHAO C , FAN H , et al. Causal network
construction based on convergent cross mapping (CCM) for alarm system root
cause tracing of nonlinear industrial process[J]. IFAC-Papers Online, 2020,
53(2):13619-13624.
|