大数据 ›› 2023, Vol. 9 ›› Issue (4): 116-138.doi: 10.11959/j.issn.2096-0271.2023052
• 研究 • 上一篇
任洪润1,2, 朱扬勇1,2
出版日期:
2023-07-01
发布日期:
2023-07-01
作者简介:
任洪润(1995- ),女,复旦大学计算机科学技术学院、上海市数据科学重点实验室博士研究生,主要研究方向为数据科学和数字经济,近期研究重点为数据产品生产、流通及定价等基金资助:
Hongrun REN1,2, Yangyong ZHU1,2
Online:
2023-07-01
Published:
2023-07-01
Supported by:
摘要:
市场是产品价格形成的过程,不同市场的价格形成方式是不一样的,产品定价模型是对市场形成产品价格过程的一种抽象。当前,数据的市场需求已经形成,但有效的数据市场尚未形成,数据定价还在探索阶段。现有的数据定价模型大部分是针对某些特定数据交易场景设计的,而不是针对特定数据市场类型设计的。考虑数据市场的经济学市场类型,从经济学视角将当前数据市场划分为卖方垄断市场、买方垄断市场、寡头垄断市场、中心化完全竞争市场以及去中心化完全竞争市场5种数据市场类型,将现有的数据定价模型归纳到相应的数据市场类型中。通过分析数据市场类型与数据定价模型的依存关系,提出数据定价的“市场类型原则”,为数据要素市场建设及数据定价提供理论指导。
中图分类号:
任洪润, 朱扬勇. 基于数据市场类型的数据定价模型研究[J]. 大数据, 2023, 9(4): 116-138.
Hongrun REN, Yangyong ZHU. Research on data pricing model based on data market type[J]. Big Data Research, 2023, 9(4): 116-138.
表1
数据交易实例"
产品 | 描述 | 交易实例 |
数字产品 | 指有版权和著作权的传统图书、音乐等电子化形成的产品 | 美国苹果公司在2003年推出iTunes Store,为其中的每首歌曲定价99美分 |
软件产品 | 指有知识产权或创造性的基于许可证的软件产品或基于SaaS的软件产品 | 美国微软公司推出office365家庭版,支持数据消费者以每年支付498元或者每月支付50元的方式订阅 |
数据集 | 指一次性提供给消费者的原始数据集或经过处理的各种未实践的数据集,包括原始数据集、数据标签、定制数据集等 | CARUSO公司将收集到的汽车车载数据出售给数据消费者,并向数据消费者收取固定的会员费和数据包费用 |
流式数据 | 指以数据流形式提供的持续生成的数据 | 美国数据公司Cryptoquote从加密货币交易场所汇总流式实时价格,并出售给数据消费者 |
数据分析报告 | 指以文字报告形式提供的数据分析报告 | 美国ThingSpeak公司对用户发送至公司的数据进行聚合、可视化等分析,并将分析报告返回给用户 |
数据服务 | 指为数据的存储、流动、访问等提供服务 | 阿里云提供各种用途的云服务器,比如提供数据的云存储服务 |
机器学习模型 | 指模型交易和对模型使用的交易 | Google Cloud出售机器学习模型的API访问权限,并采用免费增值和打包定价的方式对API调用进行定价 |
数字资产 | 指持有以备出售或处于生产过程中的数字形式的资产 | 去中心化的NFT交易所OpenSea支持游戏道具、数字艺术以及其他由区块链支持的虚拟产品等数字资产的交易 |
表2
卖方垄断市场及其定价模型"
定价策略 | 定价模型 | 参考文献 | 市场结构 | 定价标的 | |
卖方 | 买方 | ||||
博弈论 | 基于拍卖的定价模型 | [92] | 单个数据平台 | 一组数据消费者 | 数据集 |
基于沙普利值的定价模型 | [37] | 单个模型经纪人 | 一组模型购买者 | 机器学习模型 | |
非博弈论 | 基于数据质量的定价模型 | [30] | 单个数据平台所有者 | 一组数据消费者 | 数据集 |
[94] | 单个数据提供者 | 一组数据消费者 | |||
[95] | 单个数据平台所有者 | 一组数据消费者 | |||
基于查询的定价模型 | [98] | 单个数据平台 | 一组数据查询者 | 数据集 | |
[85] | 单个数据平台 | 一组数据查询者 | |||
[99] | 单个数据库所有者 | 一组数据查询者 | |||
[100] | 单个数据库所有者 | 一组数据查询者 | |||
[14] | 单个数据平台 | 一组数据消费者 | |||
[101] | 单个数据经纪人 | 一组数据消费者 | |||
基于历史记录的定价模型 | [18] | 单个企业 | 一组用户 | 数据服务 | |
[100] | 单个数据库所有者 | 一组数据消费者 | 数据集 | ||
基于隐私保护的定价模型 | [101] | 单个数据经纪人 | 一组数据消费者 | 数据集 | |
[37] | 单个模型经纪人 | 一组模型购买者 | 机器学习模型 |
表3
买方垄断市场及其定价模型"
定价策略 | 定价模型 | 参考文献 | 市场结构 | 定价标的 | |
卖方 | 买方 | ||||
博弈论 | 基于拍卖的定价模型 | [102] | 一组移动感知用户 | 单个传感平台 | 流式数据 |
[103] | 一组移动感知用户 | 单个传感平台 | |||
[104] | 一组移动感知用户 | 单个传感平台 | |||
[13] | 一组移动感知用户 | 单个传感平台 | |||
基于斯塔克尔伯格博弈的定价模型 | [102] | 一组移动感知用户 | 单个传感平台 | 流式数据 | |
基于沙普利值的定价模型 | [23] | 一组数据所有者 | 单个模型经纪人 | 数据集 | |
基于同行预测的定价模型 | [34] | 一组众包工人 | 单个数据消费者 | 数据集 | |
[105] | 一组众包工人 | 单个数据消费者 | |||
非博弈论 | 基于隐私保护的定价模型 | [12] | 一组数据提供者 | 单个数据收集器 | 数据集 |
基于黄金任务的定价模型 | [31] | 一组众包工人 | 单个数据消费者 | 数据集 | |
[32] | 一组众包工人 | 单个数据消费者 | |||
[33] | 一组众包工人 | 单个数据消费者 |
[69] | AN D , YANG Q Y , YU W ,et al. Towards truthful auction for big data trading[C]// Proceedings of 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). Piscataway:IEEE Press, 2018: 1-7. |
[70] | ZHOU X , LI H G . Buying on margin and short selling in an artificial double auction market[J]. Computational Economics, 2019,54(4): 1473-1489. |
[71] | KIRCHKAMP O , POEN E , REISS J P . Outside options:another reason to choose the first-price auction[J]. European Economic Review, 2009,53(2): 153-169. |
[72] | DE VRIES S , VOHRA R V . Combinatorial auctions:a survey[J]. INFORMS Journal on Computing, 2003,15(3): 284-309. |
[73] | HADDADI S , GHASEMI A . Pricing-based Stackelberg game for spectrum trading in self-organised heterogeneous networks[J]. IET Communications, 2016,10(11): 1374-1383. |
[74] | NGUYEN T , WELLMAN M P , SINGH S . A Stackelberg game model for botnet data exfiltration[C]// Proceedings of International Conference on Decision and Game Theory for Security. Cham:Springer, 2017: 151-170. |
[75] | FARCHI E , NARAYANAM R , NAGALAPATTI L . Ranking data slices for ML model validation:a shapley value approach[C]// Proceedings of 2021 IEEE 37th International Conference on Data Engineering (ICDE). Piscataway:IEEE Press, 2021: 1937-1942. |
[76] | SHNAYDER V , AGARWAL A , FRONGILLO R ,et al. Informed truthfulness in multi-task peer prediction[C]// Proceedings of the 2016 ACM Conference on Economics and Computation. New York:ACM Press, 2016: 179-196. |
[77] | RADANOVIC G , FALTINGS B , JURCA R . Incentives for effort in crowdsourcing using the peer truth serum[J]. ACM Transactions on Intelligent Systems and Technology, 2016,7(4): 1-28. |
[78] | ZHANG D , WANG H , DING X ,et al. On the fairness of quality-based data markets[J]. arXiv preprint, 2018,arXiv:1808.01624. |
[79] | SHAPIRO C , VARIAN H R . Versioning:the smart way to sell information[J]. Havard Business Review, 1998(Nov/ Dec): 106-114. |
[80] | HECKMAN J R , BOEHMER E L , PETERS E H ,et al. A pricing model for data markets[C]// iConference 2015 Proceedings.[S.l.:s.n.], 2015. |
[81] | LIU Q , FENG G Z , ZHENG W B ,et al. Managing data quality of cooperative information systems:model and algorithm[J]. Expert Systems With Applications, 2022,189:116074. |
[82] | YANG J , ZHAO C C , XING C X . Big data market optimization pricing model based on data quality[J]. Complexity, 2019(2): 1-10. |
[83] | CAI H , YE F , YANG Y Y ,et al. Online pricing and trading of private data in correlated queries[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,33(3): 569-585. |
[84] | KOUTRIS P , UPADHYAYA P , BALAZINSKA M ,et al. Query-based data pricing[J]. Journal of the ACM, 2015,62(5): 1-44. |
[85] | KOUTRIS P , UPADHYAYA P , BALAZINSKA M ,et al. Toward practical query pricing with QueryMarket[C]// Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2013: 613-624. |
[86] | JIANG X K , NIU C Y , YING C H ,et al. Pricing GAN-based data generators under Rényi differential privacy[J]. Information Sciences, 2022,602: 57-74. |
[87] | LI X B , RAGHUNATHAN S . Pricing and disseminating customer data with privacy awareness[J]. Decision Support Systems, 2014,59: 63-73. |
[88] | SHAH N B , ZHOU D Y . Approval voting and incentives in crowdsourcing[J]. ACM Transactions on Economics and Computation, 2020,8(3): 1-40. |
[89] | SEN S , JOE-WONG C , HA S ,et al. A survey of smart data pricing:past proposals,current plans,and future trends[J]. ACM Computing Surveys, 2013,46(2): 1-37. |
[90] | BALASUBRAMANIAN S , BHATTACHARYA S , KRISHNAN V V . Pricing information goods:a strategic analysis of the selling and pay-per-use mechanisms[J]. Marketing Science, 2015,34(2): 218-234. |
[91] | MUSCHALLE A , STAHL F , L?SER A , et al . Pricing approaches for data markets[C]// Proceedings of International Workshop on Business Intelligence for the Real-Time Enterprise. Heidelberg:Springer, 2013: 129-144. |
[92] | GAO G J , XIAO M J , WU J ,et al. DPDT:a differentially private crowd-sensed data trading mechanism[J]. IEEE Internet of Things Journal, 2020,7(1): 751-762. |
[93] | WANG X H , DUAN L J . Dynamic pricing for controlling age of information[C]// Proceedings of 2019 IEEE International Symposium on Information Theory (ISIT). Piscataway:IEEE Press, 2019: 962-966. |
[94] | STAHL F , VOSSEN G . Name your own price on data marketplaces[J]. Informatica, 2017,28(1): 155-180. |
[95] | YANG J , XING C X . Personal data market optimization pricing model based on privacy level[J]. Information, 2019,10(4): 123. |
[96] | 蔡莉, 黄振弘, 梁宇 ,等. 数据定价研究综述[J]. 计算机科学与探索, 2021,15(9): 1595-1606. |
CAI L , HUANG Z H , LIANG Y ,et al. Survey of data pricing[J]. Journal of Frontiers of Computer Science &Technology, 2021,15(9): 1595-1606. | |
[97] | KOUTRIS P , UPADHYAYA P , BALAZINSKA M ,et al. QueryMarket demonstration[J]. Proceedings of the VLDB Endowment, 2012,5(12): 1962-1965. |
[98] | LI C , MIKLAU G . Pricing aggregate queries in a data marketplace[C]// Proceedings of the International Workshop on the Web & Databases.[S.l.:s.n.], 2012: 19-24. |
[99] | DEEP S , KOUTRIS P . The design of arbitrage-free data pricing schemes[J]. arXiv preprint, 2016,arXiv:1606.09376. |
[100] | DEEP S , KOUTRIS P . QIRANA:a framework for scalable query pricing[C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM Press, 2017: 699-713. |
[1] | 朱扬勇, 叶雅珍 . 从数据的属性看数据资产[J]. 大数据, 2018,4(6): 65-76. |
ZHU Y Y , YE Y Z . Defining data assets based on the attributes of data[J]. Big Data Research, 2018,4(6): 65-76. | |
[2] | 王建冬 . 全国统一数据大市场下创新数据价格形成机制的政策思考[J]. 价格理论与实践, 2023(3): 15-19. |
WANG J D . Policy considerations on the formation mechanism of innovative data prices in the national unified data market[J]. Price (Theory & Practice), 2023(3): 15-19. | |
[3] | KUSHAL A , MOORTHY S , KUMAR V . Pricing for data markets[R]. 2012. |
[4] | GHOSH A , ROTH A . Selling privacy at auction[C]// Proceedings of the 12th ACM Conference on Electronic Commerce. New York:ACM Press, 2011: 199-208. |
[5] | AGARWAL A , DAHLEH M , SARKAR T . A marketplace for data:an algorithmic solution[C]// Proceedings of the 2019 ACM Conference on Economics and Computation. New York:ACM Press, 2019: 701-726. |
[6] | CHELLAPPA R K , MEHRA A.Versioning 2 . 0:a product line and pricing model for information goods under usage constraints and with R&D costs[C]// Proceedings of the Information Systems Technology.[S.l.:s.n.], 2013: 5-6. |
[7] | PEI J . A survey on data pricing:from economics to data science[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(10): 4586-4608. |
[8] | PARRA-ARNAU J . Optimized,direct sale of privacy in personal data marketplaces[J]. Information Sciences, 2018,424: 354-384. |
[9] | CALZOLARI G , PAVAN A . On the optimality of privacy in sequential contracting[J]. Journal of Economic Theory, 2006,130(1): 168-204. |
[101] | NIU C Y , ZHENG Z Z , WU F ,et al. Unlocking the value of privacy:trading aggregate statistics over private correlated data[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining. New York:ACM Press, 2018: 2031-2040. |
[102] | YANG D J , XUE G L , FANG X ,et al. Crowdsourcing to smartphones:incentive mechanism design for mobile phone sensing[C]// Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. New York:ACM Press, 2012: 173-184. |
[103] | LEE J S , HOH B . Sell your experiences:a market mechanism based incentive for participatory sensing[C]// Proceedings of 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom). Piscataway:IEEE Press, 2010: 60-68. |
[104] | KOUTSOPOULOS I . Optimal incentivedriven design of participatory sensing systems[C]// 2013 Proceedings IEEE INFOCOM. Piscataway:IEEE Press, 2013: 1402-1410. |
[105] | LIU Y , CHEN Y L . Sequential peer prediction:learning to elicit effort using posted prices[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017,31(1): 607-613. |
[106] | 史菲红 . 免费策略下的双寡头垄断厂商软件产品定价策略研究[D]. 天津:天津大学, 2017. |
SHI F H . Research on pricing strategy of software products of duopoly monopoly manufacturers under free strategy[D]. Tianjin:Tianjin University, 2017. | |
[107] | ZHAI Y X , ZHAO Q . Oligopoly dynamic pricing:a repeated game with incomplete information[C]// Proceedings of 2016 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2016: 4772-4775. |
[108] | HELMES K , SCHLOSSER R . Oligopoly pricing and advertising in isoelastic adoption models[J]. Dynamic Games and Applications, 2015,5(3): 334-360. |
[109] | DEVAL V , NORTA A . Mobile smartcontract lifecycle governance with incentivized proof-of-stake for oligopoly-formation prevention[C]// Proceedings of 2019 19th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing (CCGRID). Piscataway:IEEE Press, 2019: 165-168. |
[110] | STAHL F , VOSSEN G . Data quality scores for pricing on data marketplaces[C]// Proceedings of Asian Conference on Intelligent Information and Database Systems. Heidelberg:Springer, 2016: 215-224. |
[10] | SHEN Y C , GUO B , SHEN Y ,et al. A pricing model for big personal data[J]. Tsinghua Science and Technology, 2016,21(5): 482-490. |
[11] | NIU C Y , ZHENG Z Z , WU F ,et al. Online pricing with reserve price constraint for personal data markets[C]// Proceedings of 2020 IEEE 36th International Conference on Data Engineering (ICDE). Piscataway:IEEE Press, 2020: 1978-1981. |
[12] | XU L , JIANG C X , QIAN Y ,et al. Dynamic privacy pricing:a multiarmed bandit approach with timevariant rewards[J]. IEEE Transactions on Information Forensics and Security, 2017,12(2): 271-285. |
[13] | JIN H M , SU L , CHEN D Y ,et al. Quality of information aware incentive mechanisms for mobile crowd sensing systems[C]// Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM Press, 2015: 167-176. |
[14] | ZHENG Z Z , PENG Y Q , WU F ,et al. An online pricing mechanism for mobile crowdsensing data markets[C]// Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM Press, 2017: 1-10. |
[15] | LI Q Y , WU F , CHEN G H . An efficient,fair,and robust image pricing mechanism for crowdsourced 3D reconstruction[J]. IEEE Transactions on Services Computing, 2022,15(1): 498-512. |
[16] | BALAZINSKA M , HOWE B , SUCIU D . Data markets in the cloud[J]. Proceedings of the VLDB Endowment, 2011,4(12): 1482-1485. |
[17] | XU H , LI B C . Dynamic cloud pricing for revenue maximization[J]. IEEE Transactions on Cloud Computing, 2013,1(2): 158-171. |
[18] | TSAI Y C , CHENG Y D , WU C W ,et al. Time-dependent smart data pricing based on machine learning[C]// Proceedings of Canadian Conference on Artificial Intelligence. Cham:Springer, 2017: 103-108. |
[19] | CHEN J , LI M , XU H . Selling data to a machine learner:pricing via costly signaling[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n.], 2022: 3336-3359. |
[20] | XU A R , ZHENG Z Z , WU F ,et al. Online data valuation and pricing for machine learning tasks in mobile health[C]// Proceedings of IEEE INFOCOM 2022- IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2022: 850-859. |
[21] | CONG Z C , LUO X , PEI J ,et al. Data pricing in machine learning pipelines[J]. Knowledge and Information Systems, 2022,64(6): 1417-1455. |
[22] | SHAH N B , ZHOU D Y . No oops,you won’t do it again:mechanisms for self-correction in crowdsourcing[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York:ACM Press, 2016: 1-10. |
[23] | WANG T H , RAUSCH J , ZHANG C ,et al. A principled approach to data valuation for federated learning[M]// Federated learning. Cham: Springer, 2020: 153-167. |
[24] | CHEN L J , KOUTRIS P , KUMAR A . Towards model-based pricing for machine learning in a data marketplace[C]// Proceedings of the 2019 International Conference on Management of Data. New York:ACM Press, 2019: 1535-1552. |
[25] | 朱扬勇, 熊贇 . 数据的经济活动及其所需要的权利[J]. 大数据, 2020,6(6): 140-150. |
ZHU Y Y , XIONG Y . The required authorization to the data-centric economic activities[J]. Big Data Research, 2020,6(6): 140-150. | |
[26] | 朱扬勇, 熊贇 . 数据学[M]. 上海: 复旦大学出版社, 2009. |
ZHU Y Y , XIONG Y . Dataology[M]. Shanghai: Fudan University Press, 2009. | |
[27] | JIANG C K , GAO L , DUAN L J ,et al. Economics of peer-to-peer mobile crowdsensing[C]// Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2016: 1-6. |
[28] | CHENG Y , LI X C , LI Z J ,et al. AirCloud:a cloud-based air-quality monitoring system for everyone[C]// Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York:ACM Press, 2014: 251-265. |
[29] | LANE N D , MILUZZO E , LU H ,et al. A survey of mobile phone sensing[J]. IEEE Communications Magazine, 2010,48(9): 140-150. |
[30] | YU H F , ZHANG M X . Data pricing strategy based on data quality[J]. Computers & Industrial Engineering, 2017,112: 1-10. |
[31] | SHAH N B , ZHOU D Y . Double or nothing:multiplicative incentive mechanisms for Crowdsourcing[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. New York:ACM Press, 2015: 1-9. |
[32] | DE ALFARO L , FAELLA M , POLYCHRONOPOULOS V ,et al. Incentives for truthful evaluations[J]. arXiv preprint, 2016,arXiv:1608.07886. |
[33] | GOEL N , FALTINGS B . Deep Bayesian trust:a dominant and fair incentive mechanism for crowd[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 1996-2003. |
[34] | DASGUPTA A , GHOSH A . Crowdsourced judgement elicitation with endogenous proficiency[C]// Proceedings of the 22nd International Conference on World Wide Web. New York:ACM Press, 2013: 319-330. |
[35] | TIAN Y J , DING Y R , FU S J ,et al. Data boundary and data pricing based on the shapley value[J]. IEEE Access, 2022,10: 14288-14300. |
[36] | GHORBANI A , KIM M P , ZOU J . A distributional framework for data valuation[J]. arXiv preprint, 2020,arXiv:2002.12334. |
[37] | LIU J F , LOU J , LIU J X ,et al. Dealer[J]. Proceedings of the VLDB Endowment, 2021,14(6): 957-969. |
[38] | FRUHWIRTH M , RACHINGER M , PRLJA E . Discovering business models of data marketplaces[C]// Proceedings of the Annual Hawaii International Conference on System Sciences.[S.l.:s.n.], 2020. |
[39] | NIYATO D , ALSHEIKH M A , WANG P ,et al. Market model and optimal pricing scheme of big data and Internet of Things (IoT)[C]// Proceedings of 2016 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2016: 1-6. |
[40] | ZHANG M X , BELTRáN F . A survey of data pricing methods[J]. SSRN Electronic Journal, 2020:10.2139/ssrn.3609120. |
[41] | WEI X D , NAULT B R . Monopoly versioning of information goods when consumers have group tastes[J]. Production and Operations Management, 2014,23(6): 1067-1081. |
[42] | STAHL F , SCHOMM F , VOSSEN G ,et al. A classification framework for data marketplaces[J]. Vietnam Journal of Computer Science, 2016,3(3): 137-143. |
[43] | JIA R , DAO D , WANG B ,et al. Efficient task-specific data valuation for nearest neighbor algorithms[J]. arXiv preprint, 2019,arXiv:1908.08619. |
[44] | 黄丽华, 窦一凡, 郭梦珂 ,等. 数据流通市场中数据产品的特性及其交易模式[J]. 大数据, 2022,8(3): 3-14. |
HUANG L H , DOU Y F , GUO M K ,et al. Features and transaction modes of data products in data markets[J]. Big Data Research, 2022,8(3): 3-14. | |
[45] | FRICKER S A , MAKSIMOV Y V . Pricing of data products in data marketplaces[C]// Proceedings of International Conference of Software Business. Cham:Springer, 2017: 49-66. |
[46] | LIANG F , YU W , AN D ,et al. A survey on big data market:pricing,trading and protection[J]. IEEE Access, 2018,6: 15132-15154. |
[47] | DAI W Q , DAI C K , CHOO K K R ,et al. SDTE:a secure blockchain-based data trading ecosystem[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 725-737. |
[48] | 叶雅珍, 朱扬勇 . 盒装数据:一种基于数据盒的数据产品形态[J]. 大数据, 2022,8(3): 15-25. |
YE Y Z , ZHU Y Y . BoxedData:a data product form based on databox[J]. Big Data Research, 2022,8(3): 15-25. | |
[49] | XU C Z , ZHU K , YI C Y ,et al. Data pricing for blockchain-based car sharing:a stackelberg game approach[C]// Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2021: 1-5. |
[50] | 汪靖伟, 郑臻哲, 吴帆 ,等. 基于区块链的数据市场[J]. 大数据, 2020,6(3): 21-35. |
WANG J W , ZHENG Z Z , WU F ,et al. Blockchain based data marketplace[J]. Big Data Research, 2020,6(3): 21-35. | |
[51] | 刘枬, 郝雪镜, 陈俞宏 . 大数据定价方法的国内外研究综述及对比分析[J]. 大数据, 2021,7(6): 89-102. |
LIU N , HAO X J , CHEN Y H . A review and comparative analysis of domestic and foreign research on big data pricing methods[J]. Big Data Research, 2021,7(6): 89-102. | |
[52] | XIAO Z , HE D , DU J Y . A Stackelberg game pricing through balancing trilateral profits in big data market[J]. IEEE Internet of Things Journal, 2021,8(16): 12658-12668. |
[53] | 张小伟, 江东, 袁野 . 基于博弈论和拍卖的数据定价综述[J]. 大数据, 2021,7(4): 61-79. |
ZHANG X W , JIANG D , YUAN Y . A survey of game theory and auction-based data pricing[J]. Big Data Research, 2021,7(4): 61-79. | |
[54] | XIAO Y Z , SUN Y . A dynamic jamming game for real-time status updates[C]// Proceedings of IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Piscataway:IEEE Press, 2018: 354-360. |
[55] | LUO X , PEI J , CONG Z ,et al. On Shapley value in data assemblage under independent utility[J]. arXiv preprint, 2022,arXiv:2208.01163. |
[56] | XU C , SI Y Y , ZHU L H ,et al. Dynamic data transaction in crowdsensing based on multi-armed bandits and shapley value[J]. IEEE Transactions on Sustainable Computing, 2022,7(3): 609-618. |
[57] | HUANG Z Y , ZHENG J , XIAO M J . Privacy-enhanced crowdsourcing data trading based on blockchain and stackelberg game[C]// Proceedings of 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). Piscataway:IEEE Press, 2021: 621-626. |
[58] | SHEN B , SHEN Y L , JI W . Profit optimization in service-oriented data market:a Stackelberg game approach[J]. Future Generation Computer Systems, 2019,95: 17-25. |
[59] | LINDSAY L . Shapley value based pricing for auctions and exchanges[J]. Games and Economic Behavior, 2018,108: 170-181. |
[60] | GHORBANI A , ZOU J . Data shapley:equitable valuation of data for machine learning[J]. arXiv preprint, 2019,arXiv:1904.02868. |
[61] | MEI L J , LI W , NIE K . Pricing decision analysis for information services of the internet of things based on Stackelberg game[C]// Proceedings of LISS 2012. Heidelberg:Springer, 2013: 1097-1104. |
[62] | 江东, 袁野, 张小伟 ,等. 数据定价与交易研究综述[J]. 软件学报, 2023,34(3): 1396-1424. |
JIANG D , YUAN Y , ZHANG X W ,et al. Survey on data pricing and trading research[J]. Journal of Software, 2023,34(3): 1396-1424. | |
[63] | MCAFEE R P . A dominant strategy double auction[J]. Journal of Economic Theory, 1992,56(2): 434-450. |
[64] | 陈志注, 王宏志, 熊风 ,等. 大数据拍卖的定价策略与方法[J]. 中国科学技术大学学报, 2018,48(6): 486-494. |
CHEN Z Z , WANG H Z , XIONG F ,et al. Research on the auction strategies and pricing of big data[J]. Journal of University of Science and Technology of China, 2018,48(6): 486-494. | |
[65] | VICKREY W . Counterspeculation,auctions,and competitive sealed tenders[J]. The Journal of Finance, 1961,16(1): 8-37. |
[66] | KLEMPERER P . Auction theory:a guide to the literature[J]. Journal of Economic Surveys, 1999,13(3): 227-286. |
[111] | BAUER J , JANNACH D . Optimal pricing in e-commerce based on sparse and noisy data[J]. Decision Support Systems, 2018,106: 53-63. |
[112] | LI D H , YANG Q Y , YU W ,et al. Towards double auction for assisting electric vehicles demand response in smart grid[C]// Proceedings of 2017 13th IEEE Conference on Automation Science and Engineering (CASE). Piscataway:IEEE Press, 2018: 1604-1609. |
[113] | BATAINEH A S , MIZOUNI R , BARACHI M E ,et al. Monetizing personal data:a two-sided market approach[J]. Procedia Computer Science, 2016,83: 472-479. |
[114] | LIU K , QIU X Y , CHEN W H ,et al. Optimal pricing mechanism for data market in blockchain-enhanced Internet of Things[J]. IEEE Internet of Things Journal, 2019,6(6): 9748-9761. |
[67] | EINAV L , FARRONATO C , LEVIN J ,et al. Auctions versus posted prices in online markets[J]. Journal of Political Economy, 2018,126(1): 178-215. |
[68] | WU Q W , ZHOU M C , ZHU Q S ,et al. VCG auction-based dynamic pricing for multigranularity service composition[J]. IEEE Transactions on Automation Science and Engineering, 2018,15(2): 796-805. |
[1] | 朱永敏, 张诚. 数据产品开发与流通[J]. 大数据, 2023, 9(2): 46-55. |
[2] | 蔡莉, 朱扬勇. 从数据质量到数据产品质量[J]. 大数据, 2022, 8(3): 26-39. |
[3] | 叶雅珍, 朱扬勇. 盒装数据:一种基于数据盒的数据产品形态[J]. 大数据, 2022, 8(3): 15-25. |
[4] | 黄丽华, 窦一凡, 郭梦珂, 汤奇峰, 李根. 数据流通市场中数据产品的特性及其交易模式[J]. 大数据, 2022, 8(3): 3-14. |
[5] | 苏文, 张黎, 郭学兵, 何洪林, 唐新斋, 任小丽. 生态系统长期观测数据产品体系[J]. 大数据, 2022, 8(1): 84-97. |
[6] | 刘枬, 郝雪镜, 陈俞宏. 大数据定价方法的国内外研究综述及对比分析[J]. 大数据, 2021, 7(6): 89-102. |
[7] | 张小伟, 江东, 袁野. 基于博弈论和拍卖的数据定价综述[J]. 大数据, 2021, 7(4): 61-79. |
[8] | 李源, 高宁, 孙晶, 赵会群. 基于区块链的大数据交易模式研究与探索[J]. 大数据, 2021, 7(4): 37-48. |
[9] | 姜春宇,魏凯. 大数据平台的基础能力和性能测试[J]. 大数据, 2017, 3(4): 37-45. |
[10] | 张峰, 孙宗哲, 刘建楠, 宋杰. 数据产品在线定制平台的探索实践[J]. 大数据, 2016, 2(6): 118-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|