[6] |
IJNTEMA W , GOOSSEN F , FRASINCAR F ,et al. Ontology-based news recommendation[C]// Proceedings of the 2010 EDBT/ICDT Workshops. New York:ACM, 2010: 1-6.
|
[7] |
OKURA S , TAGAMI Y , ONO S ,et al. Embedding-based news recommendation for millions of users[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017: 1933-1942.
|
[8] |
KARVELIS P , GAVRILIS D , GEORGOULAS G ,et al. Topic recommendation using Doc2Vec[C]// Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE Press, 2018: 1-6.
|
[9] |
CASELLES-DUPRé H , LESAINT F , ROYO-LETELIER J . Word2Vec applied to recommendation:hyperparameters matter[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York:ACM, 2018: 352-356.
|
[10] |
ZHANG J D , CHOW C Y , LI Y H . iGeoRec:a personalized and efficient geographical location recommendation framework[J]. IEEE Transactions on Services Computing, 2015,8(5): 701-714.
|
[11] |
KARATZOGLOU A , HIDASI B . Deep learning for recommender systems[C]// Proceedings of the Eleventh ACM Conference on Recommender Systems. New York:ACM, 2017: 396-397.
|
[12] |
DEVLIN S M , KUDENKO D . Dynamic potential-based reward shaping[C]// Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. Richland:IFAAMAS, 2012: 433-440.
|
[13] |
LI L H , CHU W , LANGFORD J ,et al. A contextual-bandit approach to personalized news article recommendation[C]// Proceedings of the 19th international conference on World wide web. New York:ACM, 2010: 661-670.
|
[14] |
YUE Y S , JOACHIMS T . Interactively optimizing information retrieval systems as a dueling bandits problem[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009: 1201-1208.
|
[15] |
XIAOCONG C , LINA Y ,et al Localitysensitive state-guided experience replay optimization for sparse rewards in online recommendation[C]// Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2022: 1316-1325.
|
[16] |
刘全, 翟建伟, 章宗长 ,等. 深度强化学习综述[J]. 计算机学报, 2018,41(1): 1-27.
|
|
LIU Q , ZHAI J W , ZHANG Z Z ,et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018,41(1): 1-27.
|
[17] |
ZHANG Y Y , SU X Y , LIU Y . A novel movie recommendation system based on deep reinforcement learning with prioritized experience replay[C]// Proceedings of 2019 IEEE 19th International Conference on Communication Technology (ICCT). Piscataway:IEEE Press, 2020: 1496-1500.
|
[18] |
LI Y Q , CHEN W Z , YAN H F . Learning graph-based embedding for time-aware product recommendation[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York:ACM, 2017: 2163-2166.
|
[19] |
LIU Q , ZENG Y F , MOKHOSI R ,et al. STAMP:short-term attention/memory priority model for sessionbased recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2018: 1831-1839.
|
[20] |
蔡丽娇, 秦进, 陈双 . 远离旧区域和避免回路的强化探索方法[J]. 计算机工程, 2023,49(7): 118-124,134.
|
|
CAI L J , QIN J , CHEN S . Reinforcement exploration method to keep away from old areas and avoid loops[J]. Computer Engineering, 2023,49(7): 118-124,134.
|
[21] |
ZHAO X Y , ZHANG L , DING Z Y ,et al. Recommendations with negative feedback via pairwise deep reinforcement learning[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2018: 1040-1048.
|
[22] |
GONG S , ZHU K Q . Positive,negative and neutral:modeling implicit feedback in session-based news recommendation[EB]. arXiv prprint,2022,arXiv:2205.06058.
|
[23] |
刘树栋, 张可, 陈旭 . 基于多维度兴趣注意力和用户长短期偏好的新闻推荐[J]. 中文信息学报, 2022,36(9): 102-111.
|
|
LIU S D , ZHANG K , CHEN X . Multidimensional interest-attention-based news recommendation with long and short-term user preferences[J]. Journal of Chinese Information Processing, 2022,36(9): 102-111.
|
[24] |
陈希亮, 曹雷, 李晨溪 ,等. 基于重抽样优选缓存经验回放机制的深度强化学习方法[J]. 控制与决策, 2018,33(4): 600-606.
|
[1] |
LIN C , XIE R Q , GUAN X J ,et al. Personalized news recommendation via implicit social experts[J]. Information Sciences, 2014,254: 1-18.
|
[2] |
ZHENG G , ZHANG F , ZHENG Z ,et al. DRN:a deep reinforcement learning framework for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva:IW3C2, 2018: 167-176.
|
[3] |
HIDASI B , KARATZOGLOU A , BALTRUNAS L ,et al. Session-based recommendations with recurrent neural networks[EB]. arXiv preprint,2015,arXiv:1511.06939.
|
[4] |
LIN G Y , GAO C , LI Y F ,et al. Dual contrastive network for sequential recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2022: 2686-2691.
|
[5] |
ZHAO Q H . RESETBERT4Rec:a pretraining model integrating time and user historical behavior for sequential recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2022: 1812-1816.
|
[24] |
CHEN X L , CAO L , LI C X ,et al. Deep reinforcement learning via good choice resampling experience replay memory[J]. Control and Decision, 2018,33(4): 600-606.
|
[25] |
KOREN Y . Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. New York:ACM, 2008: 426-434.
|
[26] |
HE X N , LIAO L Z , ZHANG H W ,et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2017: 173-182.
|