[1] |
UN Global Working Group on Big Data. UN handbook on privacy- preserving computation techniques[R]. 2019.
|
[2] |
隐私计算联盟, 中国信息通信研究院. 隐私计算应用研究报告(2022年)[R]. 2022.
|
|
Privacy Computing Alliance, China Academy of Information and Communications Technology. Research report on privacy computing applications (2022)[R]. 2022.
|
[3] |
王思源, 闫树 . 隐私计算面临的挑战与发展趋势浅析[J]. 通信世界, 2022(2): 19-21.
|
|
WANG S Y , YAN S . Challenges and development trends of privacy computing[J]. Communications World, 2022(2): 19-21.
|
[4] |
隐私计算联盟, 中国信息通信研究院. 隐私计算白皮书[R]. 2021.
|
|
Privacy Computing Alliance, China Academy of Information and Communications Technology. Privacy computing white paper[R]. 2021.
|
[5] |
吕艾临, 闫树 . 隐私计算跨平台互联互通的若干思考[J]. 信息通信技术与政策, 2022(5): 2-6.
|
|
LYU A L , YAN S . Some thoughts on cross-platform interconnection of privacy preserving computing[J]. Information and Communications Technology and Policy, 2022(5): 2-6.
|
[6] |
姚明, 何浩, 李博 ,等. 隐私计算跨平台互联互通研究与实践[J]. 中国科技信息, 2022(16): 140-143.
|
|
YAO M , HE H , LI B ,et al. Research and practice on cross-platform interconnection of privacy computing[J]. China Science and Technology Information, 2022(16): 140-143.
|
[7] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.[S.l.:s.n.], 2017: 1273-1282.
|
[8] |
LIU Y , FAN T , CHEN T J ,et al. FATE:an industrial grade platform for collaborative learning with data protection[J]. Journal of Machine Learning Research, 2021,22(226): 1-6.
|
[9] |
KAIROUZ P , AVENT B , MCMAHAN H B ,et al. Advances and open problems in federated learning[J]. Foundations and Trends? in Machine Learning, 2021,14(1/2): 1-210.
|
[10] |
FENG S , YU H . Multi-participant multiclass vertical federated learning[EB]. arXiv preprint,2020, 2020,arXiv:2001.11154.
|