[1] |
YANG F , HINAMI R , MATSUI Y ,et al. Efficient image retrieval via decoupling diffusion into online and offline processing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 9087-9094.
|
[2] |
PHILBIN J , CHUM O , ISARD M ,et al. Object retrieval with large vocabularies and fast spatial matching[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2007: 1-8.
|
[3] |
SHANKAR D , NARUMANCHI S , ANANYA H A ,et al. Deep learning based large scale visual recommendation and search for E-commerce[EB]. arXiv preprint, 2017,arXiv:1703.02344.
|
[4] |
CHEN R H , LIU B , ZHU H ,et al. Approximate nearest neighbor search under neural similarity metric for largescale recommendation[C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York:ACM, 2022: 3013-3022.
|
[5] |
BERLIN K , KOREN S , CHIN C S ,et al. Assembling large genomes with singlemolecule sequencing and locality-sensitive hashing[J]. Nature Biotechnology, 2015,33(6): 623-630.
|
[6] |
TOPSAKAL O , AKINCI T C . Creating large language model applications utilizing LangChain:a primer on developing LLM apps fast[J]. International Conference on Applied Engineering and Natural Sciences, 2023,1(1): 1050-1056.
|
[7] |
AUMüLLER M , BERNHARDSSON E , FAITHFULL A . ANN-Benchmarks:a benchmarking tool for approximate nearest neighbor algorithms[J]. Information Systems, 2020,87:101374.
|
[8] |
GOLLAPUDI S , KARIA N , SIVASHANKAR V ,et al. FilteredDiskANN:graph algorithms for approximate nearest neighbor search with filters[C]// Proceedings of the ACM Web Conference 2023. New York:ACM, 2023: 3406-3416.
|
[9] |
WANG J G , YI X M , GUO R T ,et al. Milvus:a purpose-built vector data management system[C]// Proceedings of the 2021 International Conference on Management of Data. New York:ACM, 2021: 2614-2627.
|
[10] |
VAN LUIJT B , VERHAGEN M . Bringing semantic knowledge graph technology to your data[J]. IEEE Software, 2020,37(2): 89-94.
|
[11] |
LI J , LIU H F , GUI C H ,et al. The design and implementation of a real time visual search system on JD E-commerce platform[C]// Proceedings of the 19th International Middleware Conference Industry. New York:ACM, 2018: 9-16.
|
[12] |
JOHNSON J , DOUZE M , JEGOU H . Billion-scale similarity search with GPUs[J]. IEEE Transactions on Big Data, 2021,7(3): 535-547.
|
[13] |
PARK Y , PARK S , LEE S-G ,et al. Greedy filtering:a scalable algorithm for k-nearest neighbor graph construction[C]// Proceedings of the Database Systems for Advanced Applications:19th International Conference. Berlin:Springer, 2014: 327-41.
|
[14] |
WANG M , LYU L , XU X ,et al. Navigable proximity graph-driven native hybrid queries with structured and unstructured constraints[EB]. arXiv preprint, 2022,arXiv:2203.13601.
|
[15] |
JAYARAM SUBRAMANYA S , DEVVRIT F , SIMHADRI H V ,et al. Diskann:fast accurate billion-point nearest neighbor search on a single node[J]. Advances in Neural Information Processing Systems, 2019,32.
|
[16] |
STREHL A , GHOSH J . Cluster ensembles:a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2003,3: 583-617.
|
[17] |
AGGARWAL C C . Data classification:algorithms and applications[M]. [S. l.]: CRC Press, 2014: 37-64.
|
[18] |
XU X L , LI C , WANG Y X ,et al. Multiattribute approximate nearest neighbor search based on navigable small world graph[J]. Concurrency and Computation:Practice and Experience, 2020,32(24): e5970.
|
[19] |
BECKMANN N , KRIEGEL H P , SCHNEIDER R ,et al. The R*-tree:an efficient and robust access method for points and rectangles[C]// Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1990: 322-331.
|
[20] |
MUNAGA H , JARUGUMALLI V . Performance evaluation:ball-tree and KDtree in the context of MST[C]// Proceedings of International Joint Conference on Advances in Signal Processing and Information Technology. Heidelberg:Springer, 2012: 225-228.
|
[21] |
GREENSPAN M , YURICK M . Approximate k-d tree search for efficient ICP[C]// Proceedings of 4th International Conference on 3-D Digital Imaging and Modeling. Piscataway:IEEE Press, 2003: 442-448.
|
[22] |
DOLATSHAH M , HADIAN , MINAEIBIDGOLI B . Ball*-tree:efficient spatial indexing for constrained nearestneighbor search in metric spaces[EB]. arXiv preprint, 2015,arXiv:1511.00628.
|
[23] |
MALKOV Y A , YASHUNIN D A . Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(4): 824-836.
|
[24] |
FU C , XIANG C , WANG C X ,et al. Fast approximate nearest neighbor search with the navigating spreading-out graph[J]. Proceedings of the VLDB Endowment, 2019,12(5): 461-474.
|
[25] |
FU C , WANG C X , CAI D . High dimensional similarity search with satellite system graph:efficiency,scalability,and unindexed query compatibility[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(8): 4139-4150.
|
[26] |
PENNINGTON J , SOCHER R , MANNING C . Glove:global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2014: 1532-1543.
|
[27] |
ERD?S P , RéNYI A . On random graphs[J]. Publications Mathematica Debrecen, 2022,6(3/4): 290-297.
|
[28] |
WATTS D J , STROGATZ S H . Collective dynamics of “small-world” networks[J]. Nature, 1998,393(6684): 440-442.
|
[29] |
JéGOU H , DOUZE M , SCHMID C . Improving bag-of-features for large scale image search[J]. International Journal of Computer Vision, 2010,87(3): 316-336.
|
[30] |
YANDEX A B , LEMPITSKY V . Efficient indexing of billion-scale datasets of deep descriptors[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 2055-2063.
|