大数据 ›› 2015, Vol. 1 ›› Issue (3): 48-61.doi: 10.11959/j.issn.2096-0271.2015028

• 专题:网络大数据 • 上一篇    下一篇

从系统角度审视大图计算

吴城文,张广艳,郑纬民   

  1. 清华大学计算机科学与技术系 北京 100084
  • 出版日期:2015-06-20 发布日期:2020-09-28
  • 作者简介:吴城文,男,清华大学计算机科学与技术系硕士生,主要研究领域为大数据图计算。|张广艳,男,博士,清华大学计算机科学与技术系副教授,中国计算机学会会员,主要研究领域为大数据计算、网络存储、分布式计算。|郑纬民,男,清华大学教授、博士生导师,中国计算机学会理事长,目前主要从事并行与分布式计算、存储系统的研究工作,主持和参与多项国家“973”计划、“863”计划、国家自然科学基金项目。近年来在IEEE TC/IEEE TPDS/ACM TOS/FAST等本领域顶级期刊与国际会议发表论文40余篇。
  • 基金资助:
    国家重点基础研究发展计划(“973”计划)基金资助项目(2014CB340402);国家自然科学基金资助项目(61170008)

Reviewing Large Graph Computing from a System Perspective

Chengwen Wu,Guangyan Zhang,Weimin Zheng   

  1. Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China
  • Online:2015-06-20 Published:2020-09-28
  • Supported by:
    The National Basic Research Program of China(973 Program)(2014CB340402);The National Natural Science Foundation of China(61170008)

摘要:

大图计算已经成为学术界和工业界的一种基本计算模式,并且已经被应用到许多实际的大数据计算问题上,如社交网络分析、网页搜索以及商品推荐等。对于这些问题,大图的规模约有10亿级的点以及1 000亿级的边,这样的规模给大图的高效处理带来了诸多挑战。为此,介绍了大图计算的基本特征和挑战、典型的计算模型以及具有代表性的分布式、单机处理系统,同时对图处理系统中的关键技术进行总结,最后从系统的角度给出大图计算可能的一些研究方向。

关键词: 大数据计算, 大图计算, 计算模型, 计算系统

Abstract:

Large graphcomputing has been a fundamental computing pattern in both academic and industry field,and it was applied to a lot of practical big data applications,such as social network analysis,web page search,and goods recommendation.In general,most of large graphs scale to billions of vertices,and corresponding to hundreds billions of edges,which brings us challenges of efficient graph processing.Therefore,the basic feature and challenges of current large graph computing,typical computing models,and representative distributed,and single machine large graph processing systems were introduced.Then,some key technologies employed in large graph computing were summarized.Finally,some research directions in large graph computing from a system perspective were given.

Key words: big data computing, large graph computing, computing model, computing system

中图分类号: 

No Suggested Reading articles found!