[1] |
汪疆平, 肖戎 . 税务大数据分析的技术和典型应用[J]. 大数据, 2017,3(2): 92-103.
|
|
WANG J P , XIAO R . Big data analysis technology and application on taxation[J]. Big Data Research, 2017,3(2): 92-103.
|
[2] |
邵凌云 . 基于纳税人需求 优化纳税服务机制[J]. 税务研究, 2013(5): 76-79.
|
|
SHAO L Y . Optimize the tax service mechanism based on the demand of taxpayers[J]. Taxation Research, 2013(5): 76-79.
|
[3] |
谢学刚, 苟仁金 . 提升纳税服务质量的现实选择[J]. 税务研究, 2014(11): 96.
|
|
XIE X G , GOU R J . A realistic choice to improve the quality of tax services[J]. Taxation Research, 2014(11): 96.
|
[4] |
谢波峰 . 基于大数据的税收经济分析和预测探索[J]. 大数据, 2017,3(3): 15-24.
|
|
XIE B F . Exploratory research on big data application of analysis and forecasting in economics of tax[J]. Big Data Research, 2017,3(3): 15-24.
|
[5] |
ZHANG R X , YANG W , LIN L Y ,et al. Rapid adaptation of bert for information extraction on domain-specific business documents[J]. arXiv preprint,2020,arXiv:2002.01861.
|
[6] |
NGUYEN M T , LE D T , LINH L T ,et al. AURORA:an information extraction system of domainspecific business documents with limited data[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York:ACM Press, 2020: 3437-3440.
|
[7] |
FRIEDRICH A , ADEL H , TOMAZIC F ,et al. The SOFC-exp corpus and neural approaches to information extraction in the materials science domain[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2020: 1255-1268.
|
[8] |
ZEGHDAOUI M W , BOUSSAID O , BENTAYEB F ,et al. Medical-based text classification using FastText features and CNN-LSTM model[C]// Database and Expert Systems Applications. Cham:Springer, 2021: 155-167.
|
[9] |
BRANDES U , KENIS P , WAGNER D . Communicating centrality in policy network drawings[J]. IEEE Transactions on Visualization and Computer Graphics, 2003,9(2): 241-253.
|
[10] |
BRANDES U , PICH C . More flexible radial layout[J]. Journal of Graph Algorithms and Applications, 2011,15(1): 157-173.
|
[11] |
RAJ M , WHITAKER R T . Anisotropic radial layout for visualizing centrality and structure in graphs[C]// Graph Drawing and Network Visualization.[S.l.:s.n.], 2018: 351-364.
|
[12] |
FENU G , SPANO L D . Recommendation Centre:inspecting and controlling recommendations with radial layouts[C]// Workshop on Engineering Computer-Human Interaction in Recommender Systems.[S.l.:s.n.], 2016: 54-61.
|
[13] |
BOSTOCK M , HEER J . Protovis:a graphical toolkit for visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2009,15(6): 1121-1128.
|
[14] |
BOSTOCK M , OGIEVETSKY V , HEER J . D3 data-driven documents[J]. IEEE Transactions on Visualization and Computer Graphics, 2011,17(12): 2301-2309.
|
[15] |
LI D Q , MEI H H , SHEN Y ,et al. ECharts:a declarative framework for rapid construction of web-based visualization[J]. Visual Informatics, 2018,2(2): 136-146.
|
[16] |
DEVLIN J , CHANG M W , LEE K ,et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. Proceedings of NAACLHLT, 2019: 4171-4186.
|
[17] |
MCCALLUM A , LI W . Early results for named entity recognition with conditional random fields,feature induction and web-enhanced lexicons[C]// Proceedings of the 7th Conference on Natural Language Learning at HLTNAACL 2003. Morristown:Association for Computational Linguistics, 2003: 188-191.
|
[18] |
HUANG Z H , XU W , YU K . Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint,2015,arXiv:1508.01991.
|
[19] |
QIU X P , SUN T X , XU Y G ,et al. Pretrained models for natural language processing:a survey[J]. Science China Technological Sciences, 2020,63(10): 1872-1897.
|