[1] |
陈超, 吕植勇, 付姗姗 ,等. 国内外车路协同系统发展现状综述[J]. 交通信息与安全, 2011,29(1): 102-105,109.
|
|
CHEN C , LYU Z Y , FU S S ,et al. Overview of the development in cooperative vehicle-infrastructure system home and abroad[J]. Journal of Transport Information and Safety, 2011,29(1): 102105,109.
|
[2] |
李克强, 戴一凡, 李升波 ,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017,8(1): 1-14.
|
|
LI K Q , DAI Y F , LI S B ,et al. State-ofthe-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017,8(1): 1-14.
|
[3] |
国务院. “十四五”现代综合交通运输体系发展规划[Z]. 2021.
|
|
The State Council. Development plan of modern comprehensive transportation system during the “14th Five-Year Plan”[Z]. 2021.
|
[4] |
交通运输部. 数字交通“十四五”发展规划[Z]. 2021.
|
|
Ministry of Transport of the People’s Republic of China. Development plan of digital transportation during the “14th Five-Year Plan”[Z]. 2021.
|
[5] |
马承恩 . 车路协同相关产业发展趋势[J]. 电子产品世界, 2021,28(9): 4-6,106.
|
|
MA C E . The development trend of vehicle-infrastructure cooperation industry[J]. Electronic Engineering &Product World, 2021,28(9): 4-6,106.
|
[6] |
GU T Y , DOLAN-GAVITT B , GARG S . BadNets:identifying vulnerabilities in the machine learning model supply chain[J]. arXiv preprint,2017,arXiv:1708.06733.
|
[7] |
MOHAMMED N , CHEN R , FUNG B C M ,et al. Differentially private data release for data mining[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2011: 493-501.
|
[8] |
傅继彬, 张啸剑, 丁丽萍 . MAXGDDP:基于差分隐私的决策数据发布算法[J]. 通信学报, 2018,39(3): 136-146.
|
|
FU J B , ZHANG X J , DING L P . MAXGDDP:decision data release with differential privacy[J]. Journal on Communications, 2018,39(3): 136-146.
|
[9] |
ZHANG J , CORMODE G , PROCOPIUC C M ,et al. PrivBayes[J]. ACM Transactions on Database Systems, 2017,42(4): 1-41.
|
[10] |
王瑞锦, 唐榆程, 张巍琦 ,等. 基于同态加密和区块链技术的车联网隐私保护方案[J]. 网络与信息安全学报, 2020,6(1): 46-53.
|
|
WANG R J , TANG Y C , ZHANG W Q ,et al. Privacy protection scheme for Internet of vehicles based on homomorphic encryption and block chain technology[J]. Chinese Journal of Network and Information Security, 2020,6(1): 46-53.
|
[11] |
GEYER R C , KLEIN T , NABI M . Differentially private federated learning:a client level perspective[J]. arXiv preprint,2017,arXiv:1712.07557.
|
[12] |
ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// Proceedings of 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2016: 308-318.
|
[13] |
MAO Y L , HONG W B , WANG H ,et al. Privacy-preserving computation offloading for parallel deep neural networks training[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,32(7): 1777-1788.
|
[14] |
THAPA C , CHAMIKARA M A P , CAMTEPE S ,et al. SplitFed:when federated learning meets split learning[J]. arXiv preprint,2020,arXiv:2004.12088.
|
[15] |
吴茂强, 黄旭民, 康嘉文 ,等. 面向车路协同推断的差分隐私保护研究[J]. 计算机工程, 2022,48(7): 29-35.
|
|
WU M Q , HUANG X M , KANG J W ,et al. Research on differential privacy protection for collaborative vehicle-road inference[J]. Computer Engineering, 2022,48(7): 29-35.
|
[16] |
中国信息通信研究院. 车联网白皮书[Z]. 2021.
|
|
China Academy of lnformation and Communications Technology. White paper on Internet of vehicles[Z]. 2021.
|
[17] |
中国智能交通产业联盟. 车路协同信息交互技术要求[Z]. 2021.
|
|
China ITS Industry Alliance. Technical requirements for vehicleroad coordination system information interaction[Z]. 2021.
|
[18] |
袁博, 王思源 . 隐私计算产品评估体系[J]. 信息通信技术与政策, 2021,47(6): 12-18.
|
|
YUAN B , WANG S Y . Privacy preserving computing product evaluation system[J]. Information and Communications Technology and Policy, 2021,47(6): 12-18.
|
[19] |
MCMAHAN B , MOORE E , RAMAGe D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.[S.l.:s.n.], 2017: 1273-1282.
|
[20] |
梁天恺, 曾碧, 陈光 . 联邦学习综述:概念、技术、应用与挑战[J]. 计算机应用, 2021:已录用.
|
|
LIANG T K , ZENG B , CHEN G . Federated learning survey:concept,technology,application and challenge[J]. Journal of Computer Applications, 2021:accepted.
|
[21] |
DWORK C . Differential privacy[M]// Encyclopedia of cryptography and security. Boston: Springer US, 2011: 338-340.
|
[22] |
谭作文, 张连福 . 机器学习隐私保护研究综述[J]. 软件学报, 2020,31(7): 2127-2156.
|
|
TAN Z W , ZHANG L F . Survey on privacy preserving techniques for machine learning[J]. Journal of Software, 2020,31(7): 2127-2156.
|
[23] |
BHOWMICK A , DUCHI J , FREUDIGER J ,et al. Protection against reconstruction and its applications in private federated learning[J]. arXiv preprint,2018,arXiv:1812.00984.
|
[24] |
CARLINI N , LIU C , KOS J ,et al. The secret sharer:measuring unintended neural network memorization & extracting secrets[J]. arXiv preprint,2018,arXiv:1802.08232.
|
[25] |
王健宗, 孔令炜, 黄章成 ,等. 联邦学习隐私保护研究进展[J]. 大数据, 2021,7(3): 130-149.
|
|
WANG J Z , KONG L W , HUANG Z C ,et al. Research advances on privacy protection of federated learning[J]. Big Data Research, 2021,7(3): 130-149.
|
[26] |
SHOKRI R , SHMATIKOV V . Privacypreserving deep learning[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2015: 1310-1321.
|
[27] |
UCHIDA Y , NAGAI Y , SAKAZAWA S ,et al. Embedding watermarks into deep neural networks[C]// Proceedings of 2017 ACM on International Conference on Multimedia Retrieval. New York:ACM Press, 2017: 269-277.
|
[28] |
谢宸琪, 张保稳, 易平 . 人工智能模型水印研究综述[J]. 计算机科学, 2021,48(7): 9-16.
|
|
XIE C Q , ZHANG B W , YI P . Survey on artificial intelligence model watermarking[J]. Computer Science, 2021,48(7): 9-16.
|
[29] |
樊雪峰, 周晓谊, 朱冰冰 ,等. 深度神经网络模型版权保护方案综述[J]. 计算机研究与发展, 2022,59(5): 953-977.
|
|
FAN X F , ZHOU X Y , ZHU B B ,et al. Survey of copyright protection schemes based on DNN model[J]. Journal of Computer Research and Development, 2022,59(5): 953-977.
|