[1] |
MA HUATENG , . Normal and reasonable competition is good for business[C]// World Fortune Forum. 2017.
|
[2] |
HAROLD NGUYEN . 2013 state of social media spam.Technical report[R]. 2013
|
[3] |
STRINGHINI G , KRUEGEL C , VIGNA G . Detecting Spammers on social networks[C]// The 26th Annual Computer Security Applications Conference. 2010: 1-9.
|
[4] |
RAYANA S , AKOGLU L . Collective opinion spam detection:bridging review networks and metadata[C]// The 21th ACM Sigkdd International Conference On Knowledge Discovery And Data Mining. 2015: 985-994.
|
[5] |
LIM E P , NGUYEN V A , JINDAL N ,et al. Detecting product review Spammers using rating behaviors[C]// The 19th ACM International Conference On Information and Knowledge Management. 2010: 939-948.
|
[6] |
BENEVENUTO F , MAGNO G , RODRIGUES T ,et al. Detecting Spammers on twitter[C]// Collaboration,Electronic Messaging,Anti-Abuse And Spam Conference (CEAS 2010). 2010:12.
|
[7] |
GAO H , HU J , WILSON C ,et al. Detecting and characterizing social spam campaigns[C]// The 10th ACM SIGCOMM Conference on Internet Measurement. 2010: 35-47.
|
[8] |
HU X , TANG J , ZHANG Y ,et al. Social Spammer detection in microblogging[C]// (IJCAI 2013). 2013: 2633-2639.
|
[9] |
HU X , TANG J , LIU H . Online social Spammer detection[C]// AAAI. 2014: 59-65.
|
[10] |
HU X , TANG J , GAO H ,et al. Social Spammer detection with sentiment information[C]// 2014 IEEE International Conference on Data Mining (ICDM). 2014: 180-189.
|
[11] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[C]// ICLR. 2017.
|
[12] |
涂存超, 杨成, 刘知远 ,等. 网络表示学习综述[J]. 科学通报, 1998,43: 1681.
|
|
TU C C , YANG C , LIU Z Y ,et al. Network representation learning:an overview[J]. Chinese Science Bulletin, 1998,43: 1681.
|
[13] |
CUI P , WANG X , PEI J ,et al. A survey on network embedding[J]. Social and Information Networks(Cornell University Library), 2017.
|
[14] |
PEROZZI B , AL-RFOU R , SKIENA S . DeepWalk:online learning of social representations[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014: 701-710.
|
[15] |
GROVER A , LESKOVEC J . Node2vec:scalable feature learning for networks[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 855-864.
|
[16] |
RIBEIRO L F R , SAVERESE P H P , FIGUEIREDO D R . Struc2vec:learning node representations from structural identity[C]// The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 385-394.
|
[17] |
TANG J , QU M , WANG M ,et al. Line:large-scale information network embedding[C]// The 24th International Conference on World Wide Web. 2015: 1067-1077.
|
[18] |
HENAFF M , BRUNA J , LECUN Y . Deep convolutional networks on graph-structured data[J]. Computer Science, 2015.
|
[19] |
HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
[20] |
JAIN A , ZAMIR A R , SAVARESE S ,et al. Structural-RNN:deep learning on spatio-temporal graphs[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016: 5308-5317.
|
[21] |
LI Y , TARLOW D , BROCKSCHMIDT M ,et al. Gated graph sequence neural networks[J]. Computer Science, 2015.
|
[22] |
SHUMAN D I , NARANG S K , FROSSARD P ,et al. The emerging field of signal processing on graphs:extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013,30(3): 83-98.
|
[23] |
HAMMOND D K , VANDERGHEYNST P , GRIBONVAL R . Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011,30(2): 129-150.
|
[24] |
DEFFERRARD M , BRESSON X , VANDERGHEYNST P . Convolutional neural networks on graphs with fast localized spectral filtering[C]// Advances in Neural Information Processing Systems. 2016: 3844-3852.
|
[25] |
CHUNG F R K , . Spectral graph theory[C]// CBMS Regional Conference Series in Mathematics. 1996.
|