[1] |
SHU X , ARAUJO F , SCHALES D L ,et al. Threat intelligence computing[C]// ACM SIGSAC Conference on Computer and Communications Security. 2018: 1883-1898.
|
[2] |
王通, 艾中良, 张先国 . 基于深度学习的威胁情报知识图谱构建技术[J]. 计算机与现代化, 2018(12): 21-26.
|
|
WANG T , AI Z L , ZHANG X G . Knowledge graph construction of threat intelligence based on deep learning[J]. Computer and Modernization, 2018(12): 21-26.
|
[3] |
刘浏, 王东波 . 命名实体识别研究综述[J]. 情报学报, 2018(3): 329-340.
|
|
LIU L.WANG D B . A review on named entity recognition[J]. Journal of the China Society for Scientific and Technical Information, 2018(3): 329-340.
|
[4] |
张晓斌, 陈福才, 黄瑞阳 . 基于CNN和双向LSTM融合的实体关系抽取[J]. 网络与信息安全学报, 2018,4(9): 44-51.
|
|
ZHANG X B , CHEN F C , HUANG R Y . Relation extraction based on CNN and Bi-LSTM[J]. Chinese Journal of Network and Information Security, 2018,4(9): 44-51.
|
[5] |
GEORGESCU T M , IANCU B , ZURINI M . Named-entityrecognition-based automated system for diagnosing cybersecurity situations in IoT networks[J]. Sensors, 2019,19(15):3380.
|
[6] |
HAMMERTON J , . Named entity recognition with long short-term memory[C]// The 7th Conference on Natural Language Learning at Hltnaacl. 2003: 172-175.
|
[7] |
COLLOBERT R , WESTON J , BOTTOU L ,et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(8): 2493-2537.
|
[8] |
SANTOS C N , GUIMARAES V . Boosting named entity recognition with neural character embeddings[J]. arXiv preprint arXiv:1505.05008, 2015
|
[9] |
CHIU J P C , NICHOLS E . Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016,4: 357-370.
|
[10] |
STRUBELL E , VERGA P , BELANGER D ,et al. Fast and accurate entity recognition with iterated dilated convolutions[J]. arXiv preprint arXiv:1702.02098, 2017
|
[11] |
HE J , WANG H . Chinese named entity recognition and word segmentation based on character[C]// The Sixth SIGHAN Workshop on Chinese Language Processing. 2008.
|
[12] |
LIU Z , ZHU C , ZHAO T . Chinese named entity recognition with a sequence labeling approach:based on characters,or based on words[C]// International Conference on Intelligent Computing. 2010: 634-640.
|
[13] |
LI H , HAGIWARA M , LI Q ,et al. Comparison of the impact of word segmentation on name tagging for Chinese and Japanese[C]// LREC. 2014: 2532-2536.
|
[14] |
秦娅, 申国伟, 赵文波 ,等. 基于深度神经网络的网络安全实体识别方法[J]. 南京大学学报(自然科学), 2019,55(1): 29-40.
|
|
QIN Y , SHEN G W , ZHAO W B ,et al. Research on the method of network security entity recognition based on deep neural network[J]. Journal of Nanjing University (Natural Sciences), 2019,55(1): 29-40.
|
[15] |
XU Y , WANG Y , LIU T ,et al. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries[J]. Journal of the American Medical Informatics Association, 2013,21(e1):e84-e92.
|
[16] |
ZHANG Y , YANG J . Chinese NER using lattice LSTM[J]. arXiv preprint arXiv:1805.02023, 2018
|
[17] |
MNIH V , HEESS N , GRAVES A . Recurrent models of visual attention[C]// Advances in Neural Information Processing Systems 27 (NIPS 2014). 2014: 2204-2212.
|
[18] |
BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014
|
[19] |
YIN W , SCHüTZE H , XIANG B ,et al. AbCNN:attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016,4: 259-272.
|
[20] |
WANG L , CAO Z , DE-MELO G ,et al. Relation classification via multi-level attention CNNs[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 1298-1307.
|
[21] |
DEVLIN J , CHANG M W , LEE K ,et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018
|
[22] |
HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
[23] |
LAFFERTY J , MCCALLUM0 -A , PEREIRA F C N . Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. 2001: 282-289.
|
[24] |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780.
|
[25] |
PENG N , DREDZE M . Named entity recognition for chinese social media with jointly trained embeddings[C]// 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 548-554.
|
[26] |
LAMPLE G , BALLESTEROS M , SUBRAMANIAN S ,et al. Neural architectures for named entity recognition[J]. arXiv preprint arXiv:1603.01360, 2016
|
[27] |
MA X , HOVY E . End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF[J]. arXiv preprint arXiv:1603.01354, 2016
|
[28] |
ZEILER M D . ADADELTA:an adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701, 2012
|