[1] |
YADAV S , REDDY A K K , REDDY A L N ,et al. Detecting algorithmically generated malicious domain names[C]// Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement 2010. 2010: 48-61.
|
[2] |
YADAV S , REDDY A K K , REDDY A L N ,et al. Detecting algorithmically generated domain-flux attacks with DNS traffic analysis[J]. IEEE/ACM Transactions on Networking, 2012,20(5): 1663-1677.
|
[3] |
BILGE L , SEN S , BALZAROTTI D ,et al. EXPOSURE:a passive DNS analysis service to detect and report malicious domains[J]. ACM Transactions on Information and System Security (TISSEC), 2014,16(4): 1-28.
|
[4] |
YANG L , ZHAI J , LIU W ,et al. Detecting word-based algorithmically generated domains using semantic analysis[J]. Symmetry, 2019,11(2):176.
|
[5] |
SCHIAVONI S , MAGGI F , CAVALLARO L ,et al. Tracking and characterizing botnets using automatically generated domains[J]. Computer Science, 2013(2): 217-248.
|
[6] |
SCHIAVONI S , MAGGI F , CAVALLARO L ,et al. Phoenix:DGA-based botnet tracking and intelligence[C]// International Conference on Detection of Intrusions and Malware,and Vulnerability Assessment. 2014: 192-211.
|
[7] |
WOODBRIDGE J , ANDERSON H S , AHUJA A ,et al. Predicting domain generation algorithms with long short-term memory networks[J]. arXiv preprint arXiv:1611.00791, 2016
|
[8] |
YU B , GRAY D L , PAN J ,et al. Inline DGA detection with deep networks[C]// 2017 IEEE International Conference on Data Mining Workshops (ICDMW). 2017.
|
[9] |
YU B , PAN J , HU J ,et al. Character level based detection of DGA domain names[C]// 2018 International Joint Conference on Neural Networks (IJCNN). 2018: 1-8.
|
[10] |
TRAN D , MAC H , TONG V ,et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection[J]. Neurocomputing, 2018,275: 2401-2413.
|
[11] |
QIAO Y , ZHANG B , ZHANG W ,et al. DGA domain name classification method based on long short term memory with attention mechanism[J]. Applied Sciences, 20199:4205.
|
[12] |
LECUN Y , BOSER B , DENKER J S ,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551.
|
[13] |
KIM Y . Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014
|
[14] |
ZHANG X , ZHAO J , LECUN Y . Character-level convolutional networks for text classification[C]// Advances in Neural Information Processing Systems. 2015: 649-657.
|
[15] |
HOWARD A G , ZHU M , CHEN B ,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017
|
[16] |
LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,(99): 2999-3007.
|