[1] |
LITJENS G , KOOI T , BEJNORDI B E ,et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42: 60-88.
|
[2] |
KRISHNAMURTHY B , SARKAR M . Deep-learning network architecture for object detection:U.S.Patent 10,152,655[P]. 2018-12-11.
|
[3] |
DENG L , LIU Y . A joint introduction to natural language pro-cessing and to deep learning[C]// Proceedings of Deep Learning in Natural Language Processing. 2018: 1-22.
|
[4] |
COLLOBERT R , WESTON J , BOTTOU L ,et al. Naturallang-uage processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(8): 2493-2537.
|
[5] |
XIONG W , DROPPO J , HUANG X ,et al. Achieving human parity in conversational speech recognition[J]. arXiv Preprint Arxiv:1610.05256, 2016.
|
[6] |
MOUSAVI A , BARANIUK R G . Learning to invert:signal recovery via deep convolutional networks[C]// Proceedings of 2017 IEEE International Conference on Acoustics,Speech and Signal Processing. 2017: 2272-2276.
|
[7] |
王宇龙, 刘开元 . 基于面部特征点运动的活体识别方法[J]. 网络与信息安全学报, 2018,4(6): 36-44.
|
|
WANG Y L , LIU K Y . Liveness recognition method based on facial feature point motion[J]. Chinese Journal of Network and Information Security, 2018,4(6): 36-44.
|
[8] |
马玉琨, 徐姚文, 赵欣 ,等. 人脸识别系统的活体检测综述[J]. 计算机科学与探索, 2021,15(7): 1195-1206.
|
|
MA Y K , XU Y W , ZHAO X ,et al. Review of presentation attack detection in face recognition system[J]. Journal of Frontiers of Computer Science and Technology, 2021,15(7): 1195-1206.
|
[9] |
Deepfakes[EB]. 2019.
|
[10] |
谢永江, 姜淑丽 . 我国网络立法现状与问题分析[J]. 网络与信息安全学报, 2015,1(1): 24-30.
|
|
XIE Y J , JIANG S L . Analysis of the situation and problem on the legislation of cyberspace in China[J]. Chinese Journal of Network and Information Security, 2015,1(1): 24-30.
|
[11] |
乔通, 姚宏伟, 潘彬民 ,等. 基于深度学习的数字图像取证技术研究进展[J]. 网络与信息安全学报, 2021,7(5): 13-28.
|
|
QIAO T , YAO H W , PAN B M ,et al. Current study of digital image forensic techniques based on deep learning[J]. Chinese Journal of Network and Information Security, 2021,7(5): 13-28.
|
[12] |
黄惠芬, 王志红, 常玉红 . 数学形态学在数字伪造模糊检测中的应用[J]. 网络与信息安全学报, 2017,3(4): 20-25.
|
|
HUANG H F , WANG Z H , CHANG Y H . Blur detection of digital forgery using mathematical morphology[J]. Chinese Journal of Network and Information Security, 2017,3(4): 20-25.
|
[13] |
CHEN H S , ROUHSEDAGHAT M , GHANI H ,et al. DefakeHop:a light-weight high-performance deepfake detector[J]. arXiv:2103.06929, 2021.
|
[14] |
LI Y , LYU S . Exposing DeepFake videos by detecting face-warping artifacts[C]// Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 2018.
|
[15] |
AFCHAR D , NOZICK V , YAMAGISHI J ,et al. MesoNet:a compact facial video forgery detection network[C]// Proceedings of 2018 IEEE International Workshop on Information Forensics and Security. Piscataway:IEEE Press, 2018: 1-7.
|
[16] |
FENG H , HONG Z , YUE H ,et al. Learning generalized spoofcues for face anti-spoofing[J]. arXiv:2005.03922, 2020.
|
[17] |
KORSHUNOVA I , SHI W Z , DAMBRE J ,et al. Fast face-swap using convolutional neural networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017: 3697-3705.
|
[18] |
NIRKIN Y , KELLER Y , HASSNER T . FSGAN:subject agnostic face swapping and reenactment[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 7183-7192.
|
[19] |
LI L , BAO J , YANG H ,et al. FaceShifter:towards high fidelity and occlusion aware face swapping[J]. arXiv:1912.13457, 2019.
|
[20] |
SIAROHIN A , S LATHUILIèRE , TULYAKOV S ,et al. first order mot-ion model for image animation[J]. arXiv:2003.00196, 2020.
|
[21] |
KARRAS T , LAINE S , AILA T M . A style-based generator architecture for generative adversarial networks[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 4396-4405.
|
[22] |
HE Z L , ZUO W M , KAN M N ,et al. AttGAN:facial attribute editing by only changing what you want[J]. IEEE Transactions on Image Processing, 2019,28(11): 5464-5478.
|
[23] |
CHOI Y , CHOI M , KIM M ,et al. StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 8789-8797.
|
[24] |
LIU M , DING Y K , XIA M ,et al. STGAN:a unified selective transfer network for arbitrary image attribute editing[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 3668-3677.
|
[25] |
YANG X , LI Y Z , LYU S W . Exposing deep fakes using inconsistent head poses[C]// Proceedings of ICASSP 2019 -2019 IEEE International Conference on Acoustics,Speech and Signal Processing. 2019: 8261-8265.
|
[26] |
龚晓娟, 黄添强, 翁彬 ,等. 基于双层注意力的Deepfake换脸检测[J]. 网络与信息安全学报, 2021,7(2): 151-160.
|
|
GONG X J , HUANG T Q , WENG B ,et al. Deepfake swapped face detection based on double attention[J]. Chinese Journal of Network and Information Security, 2021,7(2): 151-160.
|
[27] |
LI Y Z , CHANG M C , LYU S W . In ICTU OCULI:exposing AI created fake videos by detecting eye blinking[C]// Proceedings of 2018 IEEE International Workshop on Information Forensics and Security. Piscataway:IEEE Press, 2018: 1-7.
|
[28] |
WANG Z Z , YU Z T , ZHAO C X ,et al. Deep spatial gradient and temporal depth learning for face anti-spoofing[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 5041-5050.
|
[29] |
R?SSLER A , COZZOLINO D , VERDOLIVA L ,et al. FaceForensics++:learning to detect manipulated facial images[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019: 1-11.
|