网络与信息安全学报 ›› 2021, Vol. 7 ›› Issue (4): 68-85.doi: 10.11959/j.issn.2096-109x.2021080

• 专栏Ⅰ:网络攻防技术 • 上一篇    下一篇

生成对抗网络研究综述

王正龙1, 张保稳1,2   

  1. 1 上海交通大学网络安全技术研究院,上海 200240
    2 上海市信息安全综合管理技术研究重点实验室,上海 200240
  • 修回日期:2021-06-10 出版日期:2021-08-15 发布日期:2021-08-01
  • 作者简介:王正龙(1997− ),男,宁夏银川人,上海交通大学硕士生,主要研究方向为生成对抗网络、人工神经网络鲁棒性与安全性
    张保稳(1975− ),男,山东菏泽人,上海交通大学副研究员,主要研究方向为神经网络鲁棒性与安全性、网络信息安全本体,以及新型网络系统安全性分析与评估
  • 基金资助:
    国家重点研发计划(2020YFB1807504)

Survey of generative adversarial network

Zhenglong WANG1, Baowen ZHANG1,2   

  1. 1 Institute of Cyber Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
    2 Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Shanghai 200240, China
  • Revised:2021-06-10 Online:2021-08-15 Published:2021-08-01
  • Supported by:
    The National Key R&D Program of China(2020YFB1807504)

摘要:

首先介绍了生成对抗网络基本理论、应用场景和研究现状,并列举了其亟待改进的问题。围绕针对提升模型训练效率、提升生成样本质量和降低模式崩溃现象发生可能性3类问题的解决,从模型结构和训练过程两大改进方向和7个细分维度,对近年来生成对抗网络的主要研究工作、改进机理和特点进行了归纳和总结,并结合3方面对其未来的研究方向进行了探讨。

关键词: 生成对抗网络, 生成模型, 深度学习, 模式崩溃, 分布距离度量, 神经网络鲁棒性

Abstract:

Firstly, the basic theory, application scenarios and current state of research of GAN (generative adversarial network) were introduced, and the problems need to be improved were listed.Then, recent research, improvement mechanism and model features in 2 categories and 7 subcategories revolved around 3 points (improving model training efficiency, improving the quality of generated samples, and reducing the possibility of model collapse) were generalized and summarized.Finally, 3 future research directions were discussed.

Key words: generative adversarial network, generative model, deep learning, mode collapse, distribution similarity measurement, robustness of artificial neural network

中图分类号: 

No Suggested Reading articles found!