网络与信息安全学报 ›› 2021, Vol. 7 ›› Issue (4): 68-85.doi: 10.11959/j.issn.2096-109x.2021080
王正龙1, 张保稳1,2
修回日期:
2021-06-10
出版日期:
2021-08-15
发布日期:
2021-08-01
作者简介:
王正龙(1997− ),男,宁夏银川人,上海交通大学硕士生,主要研究方向为生成对抗网络、人工神经网络鲁棒性与安全性基金资助:
Zhenglong WANG1, Baowen ZHANG1,2
Revised:
2021-06-10
Online:
2021-08-15
Published:
2021-08-01
Supported by:
摘要:
首先介绍了生成对抗网络基本理论、应用场景和研究现状,并列举了其亟待改进的问题。围绕针对提升模型训练效率、提升生成样本质量和降低模式崩溃现象发生可能性3类问题的解决,从模型结构和训练过程两大改进方向和7个细分维度,对近年来生成对抗网络的主要研究工作、改进机理和特点进行了归纳和总结,并结合3方面对其未来的研究方向进行了探讨。
中图分类号:
王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报, 2021, 7(4): 68-85.
Zhenglong WANG, Baowen ZHANG. Survey of generative adversarial network[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 68-85.
表1
本文讨论的现有主要的GAN衍生模型 Table1 An overview of GAN variants discussed in this paper"
改进维度 | 改进方法 | 衍生模型 |
基于隐变量的改进 | cGAN[ | |
输入 | 基于隐空间的改进 | DeLiGAN[ |
其他输入改进方法 | FCGAN[ | |
输出 | 多分类输出 | SGAN[ |
特征输出 | InfoGAN[ | |
集成方法 | AdaGAN[ | |
生成器 | 样本模式区分 | MADGAN[ |
其他改进方法 | MPMGAN[ | |
集成方法 | PacGAN[ | |
判别器 | 样本模式区分 | D2GAN[ |
其他改进方法 | EBGAN[ | |
多阶段模型 | GRAN[ | |
多模块组合 | 辅助模块模型 | TripleGAN[ |
其他改进方法 | SGAN[ | |
神经网络结构替换 | DCGAN[ | |
模型交叉 | 复合生成模型 | VAEGAN[ |
其他领域思想 | SAGAN[ | |
基于f-散度的方法 | f-GAN[ | |
分布距离度量 | 基于IPM的方法 | WGAN[ |
其他方法 | IGAN[ | |
梯度计算过程 | MAGAN[ |
[1] | SMOLENSKY P . Information processing in dynamical systems:Foundations of harmony theory[R]. 1986. |
[2] | HINTON G , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006 18(7): 1527-1554. |
[3] | SALAKHUTDINOV R , HINTON G . Deep boltzmann machines[C]// Artificial Intelligence and Statistics. 2009: 448-455. |
[4] | KINGMA D P , WELLING M . Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013. |
[5] | GOODFELLOW I , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial nets[C]// Advances in Neural Information Processing Systems. 2014: 2672-2680. |
[6] | KOO S , . Automatic colorization with deep convolutional generative adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 212-217. |
[7] | RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015. |
[8] | ZHU J Y , PARK T , ISOLA P ,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2223-2232. |
[9] | BAO J , CHEN D , WEN F ,et al. CVAE-GAN:fine-grained image generation through asymmetric training[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2745-2754. |
[10] | SCHLEGL T , SEEB?CK P ,, WALDSTEIN S M , et al . Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// International Conference on Information Processing in Medical Imaging. 2017: 146-157. |
[11] | ARJOVSKY M , CHINTALA S , BOTTOU L . WassersteinGAN[J]. arXiv preprint arXiv:1701.07875, 2017. |
[12] | WOLTERINK J M , LEINER T , ISGUM I . Blood vessel geometry synthesis using generative adversarial networks[J]. arXiv preprint arXiv:1804.04381, 2018. |
[13] | 刘西蒙, 谢乐辉, 王耀鹏 ,等. 深度学习中的对抗攻击与防御[J]. 网络与信息安全学报, 2020(5): 36-53. |
LIU X M , XIE L H , WANGY P ,et al. Adversarial attacks and defenses in deep learning[J]. Chinese Journal of Network and Information Security, 2020,6(5): 36-53. | |
[14] | 张煜, 吕锡香, 邹宇聪 ,等. 基于生成对抗网络的文本序列数据集脱敏[J]. 网络与信息安全学报, 2020(4): 109-119. |
ZHANG Y , LYU X X , ZOU Y C ,et al. Differentially private sequence generative adversarial networks for data privacy masking[J]. Chinese Journal of Network and Information Security, 2020,6(4): 109-119. | |
[15] | BEAULIEU-JONES B K , WU Z S , WILLIAMS C ,et al. Privacy-preserving generative deep neural networks support clinical data sharing[J]. Circulation:Cardiovascular Quality and Outcomes, 2019,12(7): e005122. |
[16] | 郭鹏, 钟尚平, 陈开志 ,等. 差分隐私 GAN 梯度裁剪阈值的自适应选取方法[J]. 网络与信息安全学报, 2018,4(5): 10-20. |
GUO P , ZHONG S P , CHEN K J ,et al. Adaptive selection method of differential privacy GAN gradient clipping thresholds[J]. Chinese Journal of Network and Information Security, 2018,4(5): 10-20. | |
[17] | 王旭东, 卫红权, 高超 ,等. 身份保持约束下的人脸图像补全[J]. 网络与信息安全学报, 2018,4(8): 71-76. |
WANG X D , WEI H Q , GAO C ,et al. Identity preserving face completion with generative adversarial networks[J]. Chinese Journal of Network and Information Security, 2018,4(8): 71-76. | |
[18] | MIYATO T , KATAOKA T , KOYAMA M ,et al. Spectral normalization for generative adversarial networks[J]. arXiv preprint arXiv:1802.05957, 2018. |
[19] | GOODFELLOW I . NIPS 2016 tutorial:generative adversarial networks[J]. arXiv preprint arXiv:1701.00160, 2016. |
[20] | MIRZA M , OSINDERO S . Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014. |
[21] | JAISWAL A , ABDALMAGEED W , WU Y ,et al. Bidirectional conditional generative adversarial networks[C]// Asian Conference on Computer Vision. 2018: 216-232. |
[22] | PERARNAU G , VAN DE WEIJER J , RADUCANU B ,et al. Invertible conditional GANs for image editing[J]. arXiv preprint ar Xiv:1611.06355, 2016. |
[23] | CHEN X , DUAN Y , HOUTHOOFT R ,et al. Infogan:Interpretable representation learning by information maximizing generative adversarial nets[C]// Advances in Neural Information Processing Systems. 2016: 2172-2180. |
[24] | GURUMURTHY S , KIRAN SARVADEVABHATLA R , VENKATESH BABU R . DeLiGAN:Generative adversarial networks for diverse and limited data[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 166-174. |
[25] | MISHRA D , JAYENDRAN A , SRIVASTAVA V ,et al. Mode matching in GANs through latent space learning and inversion[J]. arXiv preprint arXiv:1811.03692, 2018. |
[26] | KWAK H , ZHANG B T . Ways of conditioning generative adversarial networks[J]. arXiv preprint arXiv:1611.01455, 2016. |
[27] | ODENA A . Semi-supervised learning with generative adversarial networks[J]. arXiv preprint arXiv:1606.01583, 2016. |
[28] | ODENA A , OLAH C , SHLENS J . Conditional image synthesis with auxiliary classifier GANs[C]// International Conference on Machine Learning. 2017: 2642-2651. |
[29] | TOLSTIKHIN I O , GELLY S , BOUSQUET O ,et al. AdaGAN:boosting generative models[C]// Advances in Neural Information Processing Systems. 2017: 5424-5433. |
[30] | GHOSH A , KULHARIA V , NAMBOODIRI V P ,et al. Multi-agent diverse generative adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8513-8521. |
[31] | HOANG Q , NGUYEN T D , LE T ,et al. MGAN:training generative adversarial nets with multiple generators[C]// International Conference on Learning Representations. 2018. |
[32] | GHOSH A , KULHARIA V , NAMBOODIRI V . Message passing multi-agent GANs[J]. arXiv preprint arXiv:1612.01294, 2016. |
[33] | LIN Z , KHETAN A , FANTI G ,et al. PacGAN:The power of two samples in generative adversarial networks[J]. IEEE Journal on Selected Areas in Information Theory, 2020,1(1): 324-335. |
[34] | DURUGKAR I , GEMP I , MAHADEVAN S . Generative multi-adversarial networks[J]. arXiv preprint arXiv:1611.01673, 2016. |
[35] | MORDIDO G , YANG H , MEINEL C . Dropout-GAN:learning from a dynamic ensemble of discriminators[J]. arXiv preprint arXiv:1807.11346, 2018. |
[36] | NGUYEN T , LE T , VU H ,et al. Dual discriminator generative adversarial nets[C]// Advances in Neural Information Processing Systems. 2017: 2670-2680. |
[37] | NEYSHABUR B , BHOJANAPALLI S , CHAKRABARTI A . Stabilizing GAN training with multiple random projections[J]. arXiv preprint arXiv:1705.07831, 2017. |
[38] | ZHAO J , MATHIEU M , LECUN Y . Energy-based generative adversarial network[J]. arXiv preprint arXiv:1609.03126, 2016. |
[39] | BERTHELOT D , SCHUMM T , METZ L . BeGAN:boundary equilibrium generative adversarial networks[J]. arXiv preprint arXiv:1703.10717, 2017. |
[40] | IM D J , KIM C D , JIANG H ,et al. Generating images with recurrent adversarial networks[J]. arXiv preprint arXiv:1602.05110, 2016. |
[41] | ZHANG H , XU T , LI H ,et al. StackGAN:text to photo-realistic image synthesis with stacked generative adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 5907-5915. |
[42] | KARRAS T , AILA T , LAINE S ,et al. Progressive growing of gans for improved quality,stability,and variation[J]. arXiv preprint arXiv:1710.10196, 2017. |
[43] | LI C , XU T , ZHU J ,et al. Triple generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2017,30: 4088-4098. |
[44] | LEE M , SEOK J . Controllable generative adversarial network[J]. Ieee Access, 2019,7: 28158-28169. |
[45] | CHAVDAROVA T , FLEURET F . SGAN:An alternative training of generative adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 9407-9415. |
[46] | KIM Y , KIM M , KIM G . Memorization precedes generation:Learning unsupervised gans with memory networks[J]. arXiv preprint arXiv:1803.01500, 2018. |
[47] | JAISWAL A , ABDALMAGEED W , WU Y ,et al. CapsuleGAN:Generative adversarial capsule network[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018. |
[48] | LARSEN A B L , S?NDERBY S K ,, LAROCHELLE H , et al . Autoencoding beyond pixels using a learned similarity metric[C]// International Conference on Machine Learning. 2016: 1558-1566. |
[49] | ZHONG G , GAO W , LIU Y ,et al. Generative adversarial networks with decoder-encoder output noises[J]. Neural Networks, 2020. |
[50] | MAKHZANI A , SHLENS J , JAITLY N ,et al. Adversarial autoencoders[J]. arXiv preprint arXiv:1511.05644, 2015. |
[51] | DONAHUE J , KR?HENBüHL P ,, DARRELL T . Adversarial feature learning[J]. arXiv preprint arXiv:1605.09782, 2016. |
[52] | DUMOULIN V , BELGHAZI I , POOLE B ,et al. Adversarially learned inference[J]. arXiv preprint arXiv:1606.00704, 2016. |
[53] | MáTTYUS G , URTASUN R . Matching adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8024-8032. |
[54] | ZHANG H , GOODFELLOW I , METAXAS D ,et al. Self-attention generative adversarial networks[C]// International Conference on Machine Learning. 2019: 7354-7363. |
[55] | WANG X , ZHANG R , SUN Y ,et al. KdGAN:Knowledge distillation with generative adversarial networks[C]// Advances in Neural Information Processing Systems. 2018: 775-786. |
[56] | WANG J , YU L , ZHANG W ,et al. IrGAN:a minimax game for unifying generative and discriminative information retrieval models[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017: 515-524. |
[57] | DENTON E L , CHINTALA S , FERGUS R . Deep generative image models using a laplacian pyramid of adversarial networks[C]// Advances in Neural Information Processing Systems. 2015: 1486-1494. |
[58] | LLOYD S , WEEDBROOK C . Quantum generative adversarial learning[J]. Physical Review Letters, 2018,121(4). |
[59] | SAATCI Y , WILSON A G . Bayesian GAN[C]// Advances in Neural Information Processing Systems. 2017: 3622-3631. |
[60] | NOWOZIN S , CSEKE B , TOMIOKA R . f-GAN:training generative neural samplers using variational divergence minimization[C]// Advances in Neural Information Processing Systems. 2016: 271-279. |
[61] | MAO X , LI Q , XIE H ,et al. Least squares generative adversarial networks[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2794-2802. |
[62] | GULRAJANI I , AHMED F , ARJOVSKY M ,et al. Improved training of WassersteinGANs[C]// Advances in Neural Information Processing Systems. 2017: 5767-5777. |
[63] | PETZKA H , FISCHER A , LUKOVNICOV D . On the regularization of WassersteinGANs[J]. arXiv preprint arXiv:1709.08894, 2017. |
[64] | ADLER J , LUNZ S . Banach WassersteinGAN[C]// Advances in Neural Information Processing Systems. 2018: 6754-6763. |
[65] | WEI X , GONG B , LIU Z ,et al. Improving the improved training of WassersteinGANs:a consistency term and its dual effect[J]. arXiv preprint arXiv:1803.01541, 2018. |
[66] | GUO X , HONG J , LIN T ,et al. Relaxed wasserstein with applications to GANs[J]. arXiv preprint arXiv:1705.07164, 2017. |
[67] | BELLEMARE M G , DANIHELKA I , DABNEY W ,et al. The cramer distance as a solution to biased wasserstein gradients[J]. arXiv preprint arXiv:1705.10743, 2017. |
[68] | WU J , HUANG Z , THOMA J ,et al. Wasserstein divergence for GANs[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018: 653-668. |
[69] | MROUEH Y , SERCU T , GOEL V . McGAN:Mean and covariance feature matching GAN[J]. arXiv preprint arXiv:1702.08398, 2017. |
[70] | LI Y , SWERSKY K , ZEMEL R . Generative moment matching networks[C]// International Conference on Machine Learning. 2015: 1718-1727. |
[71] | LI C L , CHANG W C , CHENG Y ,et al. MmdGAN:towards deeper understanding of moment matching network[C]// Advances in Neural Information Processing Systems. 2017: 2203-2213 |
[72] | MROUEH Y , SERCU T . Fisher GAN[C]// Advances in Neural Information Processing Systems. 2017: 2513-2523. |
[73] | SALIMANS T , GOODFELLOW I , ZAREMBA W ,et al. Improved techniques for training GANS[C]// Advances in Neural Information Processing Systems. 2016: 2234-2242. |
[74] | ARORA S , GE R , LIANG Y ,et al. Generalization and equilibrium in generative adversarial nets (GANs)[J]. arXiv preprint arXiv:1703.00573, 2017. |
[75] | SALIMANS T , ZHANG H , RADFORD A ,et al. Improving GANs using optimal transport[J]. arXiv preprint arXiv:1803.05573, 2018. |
[76] | PARK N , ANAND A , MONIZ J R A ,et al. MMGAN:manifold-Matching generative adversarial networks[C]// 2018 24th International Conference on Pattern Recognition (ICPR). 2018: 1343-1348. |
[77] | WANG R , CULLY A , CHANG H J ,et al. MaGAN:margin adaptation for generative adversarial networks[J]. arXiv preprint arXiv:1704.03817, 2017. |
[78] | LIN M . SoftmaxGAN[J]. arXiv preprint arXiv:1704.06191, 2017. |
[79] | JOLICOEUR-MARTINEAU A . The relativistic discriminator:a key element missing from standard GAN[J]. arXiv preprint ar Xiv:1807.00734, 2018. |
[80] | MüLLER A . Integral probability metrics and their generating classes of functions[J]. Advances in Applied Probability, 1997: 429-443. |
[81] | EVANS L C . Partial differential equations and monge-kantorovich mass transfer[J]. Current Developments in Mathematics, 1997,1997(1): 65-126. |
[82] | BORJI A . Pros and cons of GAN evaluation measures[J]. Computer Vision and Image Understanding, 2019,179: 41-65. |
[83] | SZEGEDY C , VANHOUCKE V , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 2818-2826. |
[84] | CHE T , LI Y , JACOB A P ,et al. Mode regularized generative adversarial networks[J]. arXiv preprint arXiv:1612.02136, 2016. |
[85] | ZHOU Z , CAI H , RONG S ,et al. Activation maximization generative adversarial nets[J]. arXiv preprint arXiv:1703.02000, 2017. |
[86] | BARRATT S , SHARMA R . A note on the inception score[J]. arXiv preprint arXiv:1801.01973, 2018. |
[87] | HEUSEL M , RAMSAUER H , UNTERTHINER T ,et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]// Advances in Neural Information Processing Systems. 2017: 6626-6637. |
[88] | LOPEZ-PAZ D , OQUAB M . Revisiting classifier two-sample tests[J]. arXiv preprint arXiv:1610.06545, 2016. |
[89] | SHMELKOV K , SCHMID C , ALAHARI K . How good is my GAN[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018: 213-229. |
[90] | ZHANG Z , SONG Y , QI H . Decoupled learning for conditional adversarial networks[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018: 700-708. |
[91] | QI G J , ZHANG L , HU H ,et al. Global versus localized generative adversarial nets[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1517-1525. |
[92] | LEI N , GUO Y , AN D ,et al. Mode collapse and regularity of optimal transportation maps[J]. arXiv preprint arXiv:1902.02934, 2019. |
[93] | LIU K , TANG W , ZHOU F ,et al. Spectral regularization for combating mode collapse in GANs[C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 6382-6390. |
[94] | GUAN S , LOEW M , KO H . Data separability for neural network classifiers and the development of a separability index[J]. arXiv preprint arXiv:2005.13120, 2020. |
[95] | MO S , CHO M , SHIN J . Freeze discriminator:a simple baseline for fine-tuning GANs[J]. arXiv preprint arXiv:2002.10964, 2020. |
[96] | ROBB E , CHU W S , KUMAR A ,et al. Few-shot adaptation of generative adversarial networks[J]. arXiv preprint arXiv:2010.11943, 2020. |
[97] | ZHANG R , CHE T , GHAHRAMANI Z ,et al. MetaGAN:an adversarial approach to few-shot learning[C]// Advances in Neural Information Processing Systems. 2018: 2365-2374. |
[98] | NGUYEN K , TODOROVIC S . A self-supervised GAN for unsupervised few-shot object recognition[J]. arXiv preprint arXiv:2008.06982, 2020. |
[99] | KARRAS T , AITTALA M , HELLSTEN J ,et al. Training generative adversarial networks with limited data[J]. Advances in Neural Information Processing Systems, 2020,33. |
[100] | KANEKO T , USHIKU Y , HARADA T . Label-noise robust generative adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 2467-2476. |
[101] | KANEKO T , HARADA T . Noise robust generative adversarial networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 8404-8414. |
[102] | SZEGEDY C , ZAREMBA W , SUTSKEVER I ,et al. Intriguing properties of neural networks[C]// 2nd International Conference on Learning Representations,ICLR 2014. 2014. |
[103] | GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[J]. Stat,2015, 1050:20. |
[104] | BAI T , LUO J , ZHAO J . Recent advances in understanding adversarial robustness of deep neural networks[J]. arXiv preprint arXiv:2011.01539, 2020. |
[105] | BASTANI O , IOANNOU Y , LAMPROPOULOS L ,et al. Measuring neural net robustness with constraints[C]// Advances in Neural Information Processing Systems. 2016: 2613-2621. |
[106] | WANG S , PEI K , WHITEHOUSE J ,et al. Efficient formal safety analysis of neural networks[C]// Advances in Neural Information Processing Systems. 2018: 6367-6377. |
[1] | 余锋, 林庆新, 林晖, 汪晓丁. 基于生成对抗网络的隐私增强联邦学习方案[J]. 网络与信息安全学报, 2023, 9(3): 113-122. |
[2] | 李晓萌, 郭玳豆, 卓训方, 姚恒, 秦川. 载体独立的抗屏摄信息膜叠加水印算法[J]. 网络与信息安全学报, 2023, 9(3): 135-149. |
[3] | 陈万泽, 黄丽清, 陈家祯, 叶锋, 黄添强, 罗海峰. 融合小波快捷连接生成对抗网络的面部性别伪造[J]. 网络与信息安全学报, 2023, 9(3): 150-160. |
[4] | 谢绒娜, 马铸鸿, 李宗俞, 田野. 基于卷积神经网络的加密流量分类方法[J]. 网络与信息安全学报, 2022, 8(6): 84-91. |
[5] | 章登勇, 文凰, 李峰, 曹鹏, 向凌云, 杨高波, 丁湘陵. 基于双分支网络的图像修复取证方法[J]. 网络与信息安全学报, 2022, 8(6): 110-122. |
[6] | 林佳滢, 周文柏, 张卫明, 俞能海. 空域频域相结合的唇型篡改检测方法[J]. 网络与信息安全学报, 2022, 8(6): 146-155. |
[7] | 李梦涵, 陈可江, 张卫明, 俞能海. 基于合成语音的计算安全隐写方法[J]. 网络与信息安全学报, 2022, 8(3): 134-141. |
[8] | 陈晋音, 吴长安, 郑海斌. 基于softmax激活变换的对抗防御方法[J]. 网络与信息安全学报, 2022, 8(2): 48-63. |
[9] | 邱宝琳, 易平. 基于多维特征图知识蒸馏的对抗样本防御方法[J]. 网络与信息安全学报, 2022, 8(2): 88-99. |
[10] | 李丽娟, 李曼, 毕红军, 周华春. 基于混合深度学习的多类型低速率DDoS攻击检测方法[J]. 网络与信息安全学报, 2022, 8(1): 73-85. |
[11] | 秦中元, 贺兆祥, 李涛, 陈立全. 基于图像重构的MNIST对抗样本防御算法[J]. 网络与信息安全学报, 2022, 8(1): 86-94. |
[12] | 邹德清, 李响, 黄敏桓, 宋翔, 李浩, 李伟明. 基于图结构源代码切片的智能化漏洞检测系统[J]. 网络与信息安全学报, 2021, 7(5): 113-122. |
[13] | 李炳龙, 佟金龙, 张宇, 孙怡峰, 王清贤, 常朝稳. 基于TensorFlow的恶意代码片段自动取证检测算法[J]. 网络与信息安全学报, 2021, 7(4): 154-163. |
[14] | 谭清尹, 曾颖明, 韩叶, 刘一静, 刘哲理. 神经网络后门攻击研究[J]. 网络与信息安全学报, 2021, 7(3): 46-58. |
[15] | 杨路辉,白惠文,刘光杰,戴跃伟. 基于可分离卷积的轻量级恶意域名检测模型[J]. 网络与信息安全学报, 2020, 6(6): 112-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|