[1] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv Preprint arXiv:1602.05629, 2017.
|
[2] |
ZHU L , LIU Z , HAN S . Deep leakage from gradients[C]// Advances in Neural Information Processing Systems. 2019:32.
|
[3] |
ZHAO B , MOPURI KR , BILEN H . IDLG:improved deep leakage from gradients[J]. arXiv Preprint arXiv:2001.02610, 2020.
|
[4] |
GEIPING J , BAUERMEISTER H , DR?GE H , ,et al. Inverting gradients:how easy is it to break privacy in federated learning[J]. arXiv Preprint arXiv:2003.14053, 2020.
|
[5] |
ZHAO Y , ZHAO J , YANG M ,et al. Local differential privacy based federated learning for internet of things[J]. arXiv Preprint arXiv:2004.08856, 2020.
|
[6] |
LI Y , ZHOU Y P , JOLFAEI A ,et al. Privacy-preserving federated learning framework based on chained secure multiparty computing[J]. IEEE Internet of Things Journal, 2021,8(8): 6178-6186.
|
[7] |
TRUEX S , BARACALDO N , ANWAR A ,et al. A hybrid approach to privacy-preserving federated learning[J]. Informatik Spektrum, 2019,42(5): 356-357.
|
[8] |
杨庚, 王周生 . 联邦学习中的隐私保护研究进展[J]. 南京邮电大学学报(自然科学版), 2020,40(5): 204-214.
|
|
YANG G , WANG Z S . Survey on privacy preservation in federated learning[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2020,40(5): 204-214.
|
[9] |
陈兵, 成翔, 张佳乐 ,等. 联邦学习安全与隐私保护综述[J]. 南京航空航天大学学报, 2020,52(5): 675-684.
|
|
CHEN B , CHENG X , ZHANG J L ,et al. Survey of security and privacy in federated learning[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020,52(5): 675-684.
|
[10] |
MOHASSEL P , ZHANG Y . SecureML:a system for scalable privacy-preserving machine learning[C]// 2017 IEEE Symposium on Security and Privacy (SP). 2017: 19-38.
|
[11] |
KILBERTUS N , GASCON A , KUSNER M ,et al. Blind justice:fairness with encrypted sensitive attributes[C]// Proceedings of the 35th International Conference on Machine Learning. 2018: 2630-2639.
|
[12] |
HITAJ B , ATENIESE G , PEREZ-CRUZ F . Deep models under the gan:information leakage from collaborative deep learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 603-618.
|
[13] |
WANG Z B , SONG M K , ZHANG Z F ,et al. Beyond inferring class representatives:user-level privacy leakage from federated learning[C]// Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications. 2019: 2512-2520.
|
[14] |
HARDY C , LE MERRER E , SERICOLA B . MD-GAN:multi-discriminator generative adversarial networks for distributed datasets[C]// Proceedings of 2019 IEEE International Parallel and Distributed Processing Symposium. 2019: 866-877.
|
[15] |
RASOULI M , SUN T , RAJAGOPAL R . FedGAN:federated generative adversarial networks for distributed data[J]. arXiv Preprint arXiv:2006.07228, 2020.
|
[16] |
MUGUNTHAN V , GOKUL V , KAGAL L ,et al. Bias-free FedGAN:a federated approach to generate bias-free datasets[J]. arXiv Preprint arXiv:2103.09876, 2021.
|
[17] |
ZHAO Z , BIRKE R , KUNAR A ,et al. Fed-TGAN:federated learning framework for synthesizing tabular data[J]. arXiv:2108.07927, 2021.
|
[18] |
DWORK C , KENTHAPADI K , MCSHERRY F ,et al. Our data,ourselves:privacy via distributed noise generation[C]// Advances in Cryptology - Eurocrypt 2006. 2006: 486-503.
|
[19] |
DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// Theory of Cryptography. 2006: 265-284.
|
[20] |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11): 139-144.
|
[21] |
MELIS L , SONG C , DE CRISTOFARO E ,et al. Exploiting unintended feature leakage in collaborative learning[C]// 2019 IEEE Symposium on Security and Privacy (SP). 2019: 691-706.
|
[22] |
ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 2016: 308-318.
|
[23] |
AUGENSTEIN S , MCMAHAN H B , RAMAGE D ,et al. Generative models for effective ML on private,decentralized datasets[J]. arXiv:1911.06679,B2020.
|
[24] |
SALIMANS T , GOODFELLOW I , ZAREMBA W ,et al. Improved techniques for training GANs[J]. arXiv Preprint arXiv:1606.03498, 2016.
|
[25] |
HEUSEL M , RAMSAUER H , UNTERTHINER T ,et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. arXiv Preprint arXiv:1706.08500, 2018.
|
[26] |
NGUYEN D C , DING M , PHAM Q V ,et al. Federated learning meets blockchain in edge computing:opportunities and challenges[J]. IEEE Internet of Things Journal, 2021,8(16): 12806-12825.
|