网络与信息安全学报 ›› 2023, Vol. 9 ›› Issue (3): 123-134.doi: 10.11959/j.issn.2096-109x.2023044
朱春陶1,2,3, 尹承禧1,2,3, 张博林1,2,3, 殷琪林1,2,3,4, 卢伟1,2,3
修回日期:
2023-04-23
出版日期:
2023-06-25
发布日期:
2023-06-01
作者简介:
朱春陶(1997- ),女,河南周口人,中山大学硕士生,主要研究方向为深度伪造检测基金资助:
Chuntao ZHU1,2,3, Chengxi YIN1,2,3, Bolin ZHANG1,2,3, Qilin YIN1,2,3,4, Wei LU1,2,3
Revised:
2023-04-23
Online:
2023-06-25
Published:
2023-06-01
Supported by:
摘要:
随着计算机技术在金融服务行业中的不断发展,金融科技便利了人们的日常生活,与此同时,数字金融存在着危害性极大的安全问题。人脸生物信息作为人物身份信息的重要组成部分,广泛应用于金融行业中的支付系统、账号注册等方面;伪造人脸技术的出现不断冲击着数字金融安全体系,给国家资产安全和社会稳定造成了一定的威胁。为了应对伪造人脸带来的安全问题,提出了一种基于多域时序特征挖掘的伪造人脸检测方法。所提方法从视频在空域和频域中存在的时序特征出发,基于人脸统计特征数据分布的一致性以及时间上动作趋势的一致性,对篡改特征进行区分增强。在空域中,所提方法使用改进的长短记忆网络(LSTM)来挖掘帧间的时序特征;在频域中,利用 3D 卷积层来挖掘不同频段频谱的时序信息,并与主干网络提取到的篡改特征进行融合,进而有效地区分伪造人脸和真实人脸。所提方法在主流数据集中表现优越,证明了所提方法的有效性。
中图分类号:
朱春陶, 尹承禧, 张博林, 殷琪林, 卢伟. 基于多域时序特征挖掘的伪造人脸检测方法[J]. 网络与信息安全学报, 2023, 9(3): 123-134.
Chuntao ZHU, Chengxi YIN, Bolin ZHANG, Qilin YIN, Wei LU. Forgery face detection method based on multi-domain temporal features mining[J]. Chinese Journal of Network and Information Security, 2023, 9(3): 123-134.
表1
在FaceForensics++数据集上,不同检测方法的视频级检测结果Table 1 The video-level performance of different detection methods on FaceForensics++"
检测方法 | Deepfakes | Face2Face | FaceSwap | NeuralTextures | |||||||
ACC | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ||||
Xception | 0.967 9 | 0.976 4 | 0.917 9 | 0.931 7 | 0.960 7 | 0.970 5 | 0.817 9 | 0.823 6 | |||
Multi-attention | 0.946 4 | 0.955 4 | 0.817 9 | 0.838 9 | |||||||
F3Net | 0.971 4 | 0.978 5 | 0.971 4 | 0.974 8 | 0.846 4 | ||||||
Two-stream | 0.946 4 | 0.980 0 | 0.864 8 | 0.940 0 | 0.852 7 | 0.940 0 | 0.800 5 | ||||
RNN | 0.817 0 | 0.860 0 | 0.708 5 | 0.770 0 | 0.668 3 | 0.760 0 | 0.691 0 | 0.780 0 | |||
本文方法 | |||||||||||
注:加粗指标为最优实验结果,下划线指标为次优实验结果,余同。 |
表2
在FaceForensics++数据集上,不同检测方法的帧级检测结果Table 2 The frame-level performance of different detection methods on FaceForensics++"
检测方法 | Deepfakes | Face2Face | FaceSwap | NeuralTextures | |||||||
ACC | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ||||
Xception | 0.945 8 | 0.986 8 | 0.893 5 | 0.960 4 | 0.924 2 | 0.978 0 | 0.743 5 | 0.812 4 | |||
Multi-attention | 0.897 6 | 0.959 6 | 0.942 5 | ||||||||
RFM | 0.952 4 | 0.992 1 | 0.894 0 | 0.956 1 | 0.928 9 | 0.980 0 | 0.748 3 | 0.822 9 | |||
F3Net | |||||||||||
本文方法 | 0.954 1 | 0.989 1 | 0.978 6 | 0.769 3 | 0.839 8 |
表8
针对各个模块,所提方法在FaceForensics++数据集上的消融实验结果Table 8 For each proposed module, the ablation results of the proposed method on FaceForensics++"
对照组 | Deepfakes | Face2Face | FaceSwap | NeuralTextures | |||||||
ACC | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ||||
主干 | 0.943 4 | 0.983 9 | 0.893 3 | 0.954 9 | 0.932 8 | 0.973 7 | 0.750 5 | 0.826 0 | |||
主干+空域 | 0.950 4 | 0.990 0 | 0.904 3 | 0.941 7 | 0.759 0 | 0.836 6 | |||||
主干+频域 | 0.945 1 | 0.896 9 | 0.962 7 | 0.940 2 | 0.978 9 | 0.750 0 | 0.829 1 | ||||
主干+多域 | 0.989 1 | 0.961 5 | 0.978 6 |
表9
针对空域时序特征挖掘模块基本组成单元,所提方法在FaceForensics++数据集上的消融实验结果Table 9 For STFM basic cell, the ablation results of the proposed method on FaceForensics++"
对照组 | Deepfakes | Face2Face | FaceSwap | NeuralTextures | |||||||
ACC | AUC | ACC | AUC | ACC | AUC | ACC | AUC | ||||
主干 | 0.943 4 | 0.983 9 | 0.893 3 | 0.954 9 | 0.932 8 | 0.973 7 | 0.750 5 | 0.826 0 | |||
主干+ST-LSTM | 0.941 2 | 0.987 5 | 0.898 0 | 0.958 0 | 0.936 0 | 0.975 1 | 0.754 9 | ||||
主干+STFM | 0.836 6 |
[1] | DeepFakes GitHub non official project based on original deepfakes thread[EB]. |
[2] | THIES J , ZOLLH?FER M , STAMMINGER M , et al . Face2Face:real-time face capture and reenactment of RGB videos[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 2387-2395. |
[3] | FaceSwap GitHub non official project based on original deepfakes thread[EB]. |
[4] | GOODFELLOW I J , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. arXiv Preprint arXiv:1406.2661. 2014. |
[5] | XU W J , KESHMIRI S , WANG G H . Adversarially approximated autoencoder for image generation and manipulation[J]. IEEE Transactions on Multimedia, 2019,21(9): 2387-2396. |
[6] | 王鹏程, 郑海斌, 邹健飞 ,等. 面向商用活体检测平台的鲁棒性评估[J]. 网络与信息安全学报, 2022,8(1): 180-189. |
WANG P C , ZHENG H B , ZOU J F ,et al. Robustness evaluation of commercial liveness detection platform[J]. Chinese Journal of Network and Information Security, 2022,8(1): 180-189. | |
[7] | MATERN F , RIESS C , STAMMINGER M . Exploiting visual artifacts to expose deepfakes and face manipulations[C]// Proceedings of 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). 2019: 83-92. |
[8] | PENG B , WANG W , DONG J ,et al. Optimized 3D lighting environment estimation for image forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2017,12(2): 479-494. |
[9] | NIRKIN Y , WOLF L , KELLER Y ,et al. DeepFake detection based on discrepancies between faces and their context[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(10): 6111-6121. |
[10] | LIU H G , LI X D , ZHOU W B ,et al. Spatial-phase shallow learning:rethinking face forgery detection in frequency domain[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 772-781. |
[11] | 林佳滢, 周文柏, 张卫明 ,等. 空域频域相结合的唇型篡改检测方法[J]. 网络与信息安全学报, 2022,8(6): 146-155. |
LIN J Y , ZHOU W B , ZHANG W M ,et al. Lip forgery detection via spatial-frequency domain combination[J]. Chinese Journal of Network and Information Security, 2022,8(6): 146-155. | |
[12] | LI Y Z , CHANG M C , LYU S W . Exposing AI created fake videos by detecting eye blinking[C]// Proceedings of 2018 IEEE International Workshop on Information Forensics and Security (WIFS). 2019: 1-7. |
[13] | SUN Z K , HAN Y J , HUA Z Y ,et al. Improving the efficiency and robustness of deepfakes detection through precise geometric features[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 3608-3617. |
[14] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[15] | WANG Y B , WU H X , ZHANG J J ,et al. PredRNN:a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023,45(2): 2208-2225. |
[16] | THIES J , ZOLLH?FER M , NIE?NER M . Deferred neural rendering[J]. ACM Transactions on Graphics, 2019,38(4): 1-12. |
[17] | LIU M , BREUEL T , KAUTZ J . Unsupervised image-to-image translation networks[J]. arXiv Preprint arXiv:1703.00848, 2017. |
[18] | KARRAS T , AILA T , LAINE S ,et al. Progressive growing of gans for improved quality,stability,and variation[J]. arXiv Preprint arXiv:1710.10196, 2017. |
[19] | KARRAS T , LAINE S , AILA T M . A style-based generator architecture for generative adversarial networks[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 4396-4405. |
[20] | HUANG X , BELONGIE S . Arbitrary style transfer in real-time with adaptive instance normalization[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). 2017: 1510-1519. |
[21] | LI L Z , BAO J M , YANG H ,et al. Advancing high fidelity identity swapping for forgery detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 5073-5082. |
[22] | PAN X Y , ZHANG X , LYU S W . Exposing image splicing with inconsistent local noise variances[C]// Proceedings of 2012 IEEE International Conference on Computational Photography (ICCP). 2012: 1-10. |
[23] | FERRARA P , BIANCHI T , DE ROSA A ,et al. Image forgery localization via fine-grained analysis of CFA artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012,7(5): 1566-1577. |
[24] | FRIDRICH J , KODOVSKY J . Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012,7(3): 868-882. |
[25] | YANG X , LI Y Z , LYU S W . Exposing deep fakes using inconsistent head poses[C]// Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). 2019: 8261-8265. |
[26] | AGARWAL S , FARID H , GU Y ,et al. Protecting world leaders against deep fakes[C]// Proceedings of CVPR Workshops. 2019,1:38. |
[27] | CHOLLET F . Xception:deep learning with depthwise separable convolutions[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 1800-1807. |
[28] | AFCHAR D , NOZICK V , YAMAGISHI J ,et al. MesoNet:a compact facial video forgery detection network[C]// Proceedings of 2018 IEEE International Workshop on Information Forensics and Security (WIFS). 2019: 1-7. |
[29] | NGUYEN H H , YAMAGISHI J , ECHIZEN I . Capsule-forensics:using capsule networks to detect forged images and videos[C]// Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). 2019: 2307-2311. |
[30] | LI L Z , BAO J M , ZHANG T ,et al. Face X-ray for more general face forgery detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 5000-5009. |
[31] | DURALL R , KEUPER M , PFREUNDT F J ,et al. Unmasking DeepFakes with simple features[J]. arXiv Preprint arXiv:1911.00686, 2019. |
[32] | QIAN Y Y , YIN G J , SHENG L ,et al. Thinking in frequency:face forgery detection by mining frequency-aware clues[C]// Proceedings of European Conference on Computer Vision. 2020: 86-103. |
[33] | GüERA D , DELP E J . Deepfake video detection using recurrent neural networks[C]// Proceedings of 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 2019: 1-6. |
[34] | HU J , LIAO X , WANG W ,et al. Detecting compressed deepfake videos in social networks using frame-temporality two-stream convolutional network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022,32(3): 1089-1102. |
[35] | LU W , LIU L Y , ZHANG B L ,et al. Detection of deepfake videos using long-distance attention[J]. IEEE Transactions on Neural networks and Learning Systems, 2023,(99): 1-14. |
[36] | SHI X J , CHEN Z R , WANG H ,et al. Convolutional LSTM Network:a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing System. 2015: 802-810. |
[37] | JADERBERG M , SIMONYAN K , ZISSERMAN A ,et al. Spatial transformer networks[J]. arXiv Preprint arXiv:1506.02025, 2015. |
[38] | WANG Q L , WU B G , ZHU P F ,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 11531-11539. |
[39] | R?SSLER A , COZZOLINO D , VERDOLIVA L ,et al. FaceForensicss:learning to detect manipulated facial images[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2020: 1-11. |
[40] | LI Y Z , YANG X , SUN P ,et al. Celeb-DF:a large-scale challenging dataset for DeepFake forensics[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 3204-3213. |
[41] | DOLHANSKY B , HOWES R , PFLAUM B ,et al. The deepfake detection challenge (DFDC) preview dataset[J]. arXiv Preprint arXiv:1910.08854, 2019. |
[42] | WANG C R , DENG W H . Representative forgery mining for fake face detection[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 14918-14927. |
[43] | ZHAO H Q , WEI T Y , ZHOU W B ,et al. Multi-attentional deepfake detection[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 2185-2194. |
[1] | 陈先意, 顾军, 颜凯, 江栋, 许林峰, 付章杰. 针对车牌识别系统的双重对抗攻击[J]. 网络与信息安全学报, 2023, 9(3): 16-27. |
[2] | 叶天鹏, 林祥, 李建华, 张轩凯, 许力文. 面向雾计算的个性化轻量级分布式网络入侵检测系统[J]. 网络与信息安全学报, 2023, 9(3): 28-37. |
[3] | 祖立军, 曹雅琳, 门小骅, 吕智慧, 叶家炜, 李泓一, 张亮. 基于隐私风险评估的脱敏算法自适应方法[J]. 网络与信息安全学报, 2023, 9(3): 49-59. |
[4] | 夏锐琪, 李曼曼, 陈少真. 基于机器学习的分组密码结构识别[J]. 网络与信息安全学报, 2023, 9(3): 79-89. |
[5] | 袁静怡, 李子川, 彭国军. EN-Bypass:针对邮件代发提醒机制的安全评估方法[J]. 网络与信息安全学报, 2023, 9(3): 90-101. |
[6] | 余锋, 林庆新, 林晖, 汪晓丁. 基于生成对抗网络的隐私增强联邦学习方案[J]. 网络与信息安全学报, 2023, 9(3): 113-122. |
[7] | 李晓萌, 郭玳豆, 卓训方, 姚恒, 秦川. 载体独立的抗屏摄信息膜叠加水印算法[J]. 网络与信息安全学报, 2023, 9(3): 135-149. |
[8] | 蔡召, 荆涛, 任爽. 以太坊钓鱼诈骗检测技术综述[J]. 网络与信息安全学报, 2023, 9(2): 21-32. |
[9] | 潘雁, 林伟, 祝跃飞. 渐进式的协议状态机主动推断方法[J]. 网络与信息安全学报, 2023, 9(2): 81-93. |
[10] | 杨盼, 康绯, 舒辉, 黄宇垚, 吕小少. 基于函数摘要的二进制程序污点分析优化方法[J]. 网络与信息安全学报, 2023, 9(2): 115-131. |
[11] | 肖天, 江智昊, 唐鹏, 黄征, 郭捷, 邱卫东. 基于深度强化学习的高性能导向性模糊测试方案[J]. 网络与信息安全学报, 2023, 9(2): 132-142. |
[12] | 袁承昊, 李勇, 任爽. 多关键词动态可搜索加密方案[J]. 网络与信息安全学报, 2023, 9(2): 143-153. |
[13] | 侯泽洲, 任炯炯, 陈少真. 基于神经网络区分器的SIMON-like算法参数安全性评估[J]. 网络与信息安全学报, 2023, 9(2): 154-163. |
[14] | 郭学镜, 方毅翔, 赵怡, 张天助, 曾文超, 王俊祥. 基于传统引导机制的深度鲁棒水印算法[J]. 网络与信息安全学报, 2023, 9(2): 175-183. |
[15] | 余北缘, 任珊瑶, 刘建伟. 区块链资产窃取攻击与防御技术综述[J]. 网络与信息安全学报, 2023, 9(1): 1-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|