网络与信息安全学报 ›› 2023, Vol. 9 ›› Issue (3): 123-134.doi: 10.11959/j.issn.2096-109x.2023044

• 学术论文 • 上一篇    下一篇

基于多域时序特征挖掘的伪造人脸检测方法

朱春陶1,2,3, 尹承禧1,2,3, 张博林1,2,3, 殷琪林1,2,3,4, 卢伟1,2,3   

  1. 1 中山大学计算机学院,广东 广州 510006
    2 广东省信息安全技术重点实验室(中山大学),广东 广州 510006
    3 机器智能与先进计算教育部重点实验室(中山大学),广东 广州 510006
    4 山东省计算机网络重点实验室,山东 济南 250014
  • 修回日期:2023-04-23 出版日期:2023-06-25 发布日期:2023-06-01
  • 作者简介:朱春陶(1997- ),女,河南周口人,中山大学硕士生,主要研究方向为深度伪造检测
    尹承禧(1999- ),男,广东广州人,中山大学硕士生,主要研究方向为多媒体信息安全和数字图像取证
    张博林(1999- ),男,陕西宝鸡人,中山大学硕士生,主要研究方向为深度伪造检测
    殷琪林(1995- ),男,江苏泰州人,中山大学博士生,主要研究方向为数字多媒体取证
    卢伟(1979- ),男,河南南阳人,中山大学教授、博士生导师,主要研究方向为多媒体信息安全、人工智能安全与对抗、信息隐藏
  • 基金资助:
    国家自然科学基金(U2001202);国家自然科学基金(62072480)

Forgery face detection method based on multi-domain temporal features mining

Chuntao ZHU1,2,3, Chengxi YIN1,2,3, Bolin ZHANG1,2,3, Qilin YIN1,2,3,4, Wei LU1,2,3   

  1. 1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
    2 Guangdong Province Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou 510006, China
    3 Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing, Sun Yat-sen University, Guangzhou 510006, China
    4 Shandong Key Laboratory of Computer Networks, Shandong 250014, China
  • Revised:2023-04-23 Online:2023-06-25 Published:2023-06-01
  • Supported by:
    The National Natural Science Foundation of China(U2001202);The National Natural Science Foundation of China(62072480)

摘要:

随着计算机技术在金融服务行业中的不断发展,金融科技便利了人们的日常生活,与此同时,数字金融存在着危害性极大的安全问题。人脸生物信息作为人物身份信息的重要组成部分,广泛应用于金融行业中的支付系统、账号注册等方面;伪造人脸技术的出现不断冲击着数字金融安全体系,给国家资产安全和社会稳定造成了一定的威胁。为了应对伪造人脸带来的安全问题,提出了一种基于多域时序特征挖掘的伪造人脸检测方法。所提方法从视频在空域和频域中存在的时序特征出发,基于人脸统计特征数据分布的一致性以及时间上动作趋势的一致性,对篡改特征进行区分增强。在空域中,所提方法使用改进的长短记忆网络(LSTM)来挖掘帧间的时序特征;在频域中,利用 3D 卷积层来挖掘不同频段频谱的时序信息,并与主干网络提取到的篡改特征进行融合,进而有效地区分伪造人脸和真实人脸。所提方法在主流数据集中表现优越,证明了所提方法的有效性。

关键词: 人脸身份认证, Deepfake检测, 时序特征, 多域特征

Abstract:

Financial technology has greatly facilitated people’s daily life with the continuous development of computer technology in the financial services industry.However, digital finance is accompanied by security problems that can be extremely harmful.Face biometrics, as an important part of identity information, is widely used in payment systems, account registration, and many other aspects of the financial industry.The emergence of face forgery technology constantly impacts the digital financial security system, posing a threat to national asset security and social stability.To address the security problems caused by fake faces, a forgery face detection method based on multi-domain temporal features mining was proposed.The tampering features were distinguished and enhanced based on the consistency of statistical feature data distribution and temporal action trend in the temporal features of videos existing in the spatial domain and frequency domain.Temporal information was mined in the spatial domain using an improved LSTM, while in the frequency domain, temporal information existing in different frequency bands of the spectrum was mined using 3D convolution layers.The information was then fused with the tampering features extracted from the backbone network, thus effectively distinguishing forged faces from real ones.The effectiveness of the proposed method was demonstrated on mainstream datasets.

Key words: face authentication, Deepfake detection, temporal features, multi-domain features

中图分类号: 

No Suggested Reading articles found!