[1] |
LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60.
|
[2] |
YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
|
[3] |
梁应敞, 谭俊杰, 智能无线通信技术研究概况[J]. 通信学报, 2020,41(7): 1-17.
|
|
LIANG Y C , TAN J J , NIYATO D . Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020,41(7): 1-17.
|
[4] |
杨强 . AI与数据隐私保护:联邦学习的破解之道[J]. 信息安全研究, 2019,5(11): 961-965.
|
|
YANG Q . AI and data privacy protection:the way to federated learning[J]. Journal of Information Security Research, 2019,5(11): 961-965.
|
[5] |
谭清尹, 曾颖明, 韩叶 ,等. 神经网络后门攻击研究[J]. 网络与信息安全学报, 2021,7(3): 46-58.
|
|
TAN Q Y , ZENG Y M , HAN Y ,et al. Survey on backdoor attacks targeted on neural network[J]. Chinese Journal of Network and Information Security, 2021,7(3): 46-58.
|
[6] |
MELIS L , SONG C Z , DE CRISTOFARO E ,et al. Exploiting unintended feature leakage in collaborative learning[C]// Proceedings of 2019 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2019: 691-706.
|
[7] |
周传鑫, 孙奕, 汪德刚 ,等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021,7(5): 77-92.
|
|
ZHOU C X , SUN Y , WANG D G ,et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021,7(5): 77-92.
|
[8] |
HITAJ B , ATENIESE G , PEREZ-CRUZ F , . Deep models under the GAN:information leakage from collaborative deep learning[C]// Proceedings of CCS '17:Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017: 603-618.
|
[9] |
MOTHUKURI V , PARIZI R M , POURIYEH S ,et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021,115: 619-640.
|
[10] |
WAGH S , GUPTA D , CHANDRAN N . SecureNN:3-party secure computation for neural network training[J]. Proceedings on Privacy Enhancing Technologies, 2019,2019(3): 26-49.
|
[11] |
XU R H , BARACALDO N , ZHOU Y ,et al. HybridAlpha:an efficient approach for privacy-preserving federated learning[C]// Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. 2019: 13-23.
|
[12] |
方晨, 郭渊博, 王一丰 ,等. 基于区块链和联邦学习的边缘计算隐私保护方法[J]. 通信学报, 2021,42(11): 28-40.
|
|
FANG C , GUO Y B , WANG Y F ,et al. Edge computing privacy protection method based on blockchain and federated learning[J]. Journal on Communications, 2021,42(11): 28-40.
|
[13] |
KANAGAVELU R , LI Z X , SAMSUDIN J ,et al. Two-phase multi-party computation enabled privacy-preserving federated learning[C]// Proceedings of 2020 20th IEEE/ACM International Symposium on Cluster,Cloud and Internet Computing (CCGRID). 2020: 410-419.
|
[14] |
董业, 侯炜, 陈小军 ,等. 基于秘密分享和梯度选择的高效安全联邦学习[J]. 计算机研究与发展, 2020,57(10): 2241-2250.
|
|
DONG Y , HOU W , CHEN X J ,et al. Efficient and secure federated learning based on secret sharing and gradients selection[J]. Journal of Computer Research and Development, 2020,57(10): 2241-2250.
|
[15] |
PHONG L T , AONO Y , HAYASHI T ,et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018,13(5): 1333-1345.
|
[16] |
张泽辉, 富瑶, 高铁杠 . 支持数据隐私保护的联邦深度神经网络模型研究[J]. 自动化学报, 2020.
|
|
ZHANG Z H , FU Y , GAO T G . Research on federated deep neural network model for data privacy protection[J]. Acta Automatica Sinica, 2020.
|
[17] |
ZHAO L C , WANG Q , ZOU Q ,et al. Privacy-preserving collaborative deep learning with unreliable participants[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 1486-1500.
|
[18] |
JAYARAMAN B , EVANS D . Evaluating differentially private machine learning in practice[C]// Proceedings of the28th USENIX Security Symposium. 2019: 1895-1912.
|
[19] |
成艺 . 联合学习环境下保护隐私的数据聚合技术研究[D]. 成都:电子科技大学, 2020: 17-45.
|
|
CHENG Y . Research on data aggregation technology based on privacy-preserving in federated learning[D]. Chengdu:University of Electronic Science and Technology of China, 2020: 17-45.
|
[20] |
SHAMIR A . How to share a secret[J]. Communications of the ACM, 1979,22(11): 612-613.
|
[21] |
XU G W , LI H W , ZHANG Y ,et al. Privacy-preserving federated deep learning with irregular users[J]. IEEE Transactions on Dependable and Secure Computing, 2020,(99):1.
|
[22] |
ZHENG Y F , DUAN H Y , WANG C . Learning the truth privately and confidently:encrypted confidence-aware truth discovery in mobile crowdsensing[J]. IEEE Transactions on Information Forensics and Security, 2018,13(10): 2475-2489.
|
[23] |
TIAN Y L , LI T , XIONG J B ,et al. A blockchain-based machine learning framework for edge services in IoT[J]. IEEE Transactions on Industrial Informatics, 2022,18(3): 1918-1929.
|
[24] |
XIONG J B , BI R W , ZHAO M F ,et al. Edge-assisted privacy-preserving raw data sharing framework for connected autonomous vehicles[J]. IEEE Wireless Communications, 2020,27(3): 24-30.
|
[25] |
BONAWITZ K , EICHNER H , GRIESKAMP W ,et al. Towards federated learning at scale:system design[J]. arXiv preprint arXiv:1902.01046, 2019.
|
[26] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017: 1273-1282.
|
[27] |
PAILLIER P , . Public-key cryptosystems based on composite degree residuosity classes[C]// Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques. 1999: 223-238.
|
[28] |
ACAR A , AKSU H , ULUAGAC A S ,et al. A survey on homomorphic encryption schemes[J]. ACM Computing Surveys, 2019,51(4): 1-35.
|
[29] |
CANETTI R , FEIGE U , GOLDREICH O ,et al. Adaptively secure multi-party computation[C]// Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing. 1996: 639-648.
|
[30] |
HENDERSON M , THOMSON B , WILLIAMS J D . The third dialog state tracking challenge[C]// Proceedings of 2014 IEEE Spoken Language Technology Workshop. 2014: 324-329.
|
[31] |
BUDZIANOWSKI P , WEN T H , TSENG B H ,et al. MultiWOZ A large-scale multi-domain wizard-of-ozdataset for task-oriented dialogue modelling[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 5016-5026.
|
[32] |
SHOKRI R , SHMATIKOV V . Privacy-preserving deep learning[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 2015: 1310-1321.
|
[33] |
KANG J W , XIONG Z H , NIYATO D ,et al. Toward secure blockchain-enabled Internet of vehicles:optimizing consensus management using reputation and contract theory[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2906-2920.
|
[34] |
KANG J W , XIONG Z H , NIYATO D ,et al. Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory[J]. IEEE Internet of Things Journal, 2019,6(6): 10700-10714.
|
[35] |
KANG J W , XIONG Z H , NIYATO D ,et al. Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020,27(2): 72-80.
|
[36] |
CATALANO D , FIORE D . Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data[C]// Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 2015: 1518-1529.
|
[37] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324.
|