[1] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Lake Tahoe:MIT Press, 2012.
|
[2] |
HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018.
|
[3] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[C]// Proceedings of International Conference on Learning Representations. San Diego:Elsevier, 2015.
|
[4] |
XIE S , GIRSHICK R , DOLL R P ,et al. Aggregated residual transformations for deep neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017.
|
[5] |
LECUN Y , DENKER J S , SOLLA S A . Optimal brain damage[C]// Proceedings of the Advances in Neural Information Processing Systems. Piscataway:IEEE Press, 1990.
|
[6] |
HOWARD A G , ZHU M , CHEN B ,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017
|
[7] |
SANDLER M , HOWARD A , ZHU M ,et al. Mobilenetv2:inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018.
|
[8] |
ZHANG X , ZHOU X , LIN M ,et al. Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018.
|
[9] |
MCCULLOCH W S , PITTS W . A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943,5(4): 115-133.
|
[10] |
ROSENBLATT F . The perceptron:a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958,65(6):386.
|
[11] |
MARVIN M , SEYMOUR P . Perceptrons[M]. Cambridge: MIT PressPress, 1969.
|
[12] |
HOPFIELD J J . Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982,79(8): 2554-2558.
|
[13] |
HINTON G E , SEJNOWSKI T J . Learning and relearning in Boltzmann machines[J]. Parallel Distributed Processing:Explorations in the Microstructure of Cognition, 1986,1(282-317):2.
|
[14] |
MCCLELLAND J L , RUMELHART D E , GROUP P R . Parallel distributed processing[M]. Cambridge: MIT Press Press, 1987.
|
[15] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-324.
|
[16] |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786): 504-507.
|
[17] |
TAIGMAN Y , YANG M , RANZATO M A ,et al. Deepface:closing the gap to human-level performance in face verification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014.
|
[18] |
SUN Y , WANG X , TANG X . Deep learning face representation from predicting 10,000 classes[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014.
|
[19] |
SCHROFF F , KALENICHENKO D , PHILBIN J . Facenet:A unified embedding for face recognition and clustering[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015.
|
[20] |
DENG J , GUO J , XUE N ,et al. Arcface:additive angular margin loss for deep face recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019.
|
[21] |
WEN Y , ZHANG K , LI Z ,et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the European Conference on Computer Vision. Glasgow:Springer, 2016.
|
[22] |
GIRSHICK R , DONAHUE J , DARRELL T ,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014.
|
[23] |
GIRSHICK R , . Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015.
|
[24] |
REN S , HE K , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge:MIT Press, 2015.
|
[25] |
HE K , GKIOXARI G , DOLL R P ,et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017.
|
[26] |
WANG L , XIONG Y , WANG Z ,et al. Temporal segment networks:towards good practices for deep action recognition[C]// Proceedings of the European Conference on Computer Vision. Amsterdam:Springer, 2016.
|
[27] |
MIKOLOV T , YIH W-T , ZWEIG G . Linguistic regularities in continuous space word representations[C]// Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Piscataway:IEEE Press, 2013.
|
[28] |
KALCHBRENNER N , GREFENSTETTE E , BLUNSOM P . A convolutional neural network for modelling sentences[J]. arXiv:14042188, 2014
|
[29] |
HASSIBI B , STORK D G , WOLFF G J . Optimal brain surgeon and general network pruning[C]// Proceedings of the IEEE International Conference on Neural Networks. Piscataway:IEEE Press, 1993.
|
[30] |
SRINIVAS S , BABU R V . Data-free parameter pruning for deep neural networks[C]// Proceedings of the British Machine Vision Conference. Swansea:BMVA Press, 2015
|
[31] |
HAN S , POOL J , TRAN J ,et al. Learning both weights and connections for efficient neural network[C]// Proceedings of the Advances in Neural Information Processing Systems. Cambridge:MIT Press , 2015.
|
[32] |
HAN S , LIU X , MAO H ,et al. EIE:efficient inference engine on compressed deep neural network[C]// Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Piscataway:IEEE Press, 2016.
|
[33] |
PARK J , LI S , WEN W ,et al. Faster cnns with direct sparse convolutions and guided pruning[C]// International Conference on Learning Representations. San Diego:Elsevier, 2016,
|
[34] |
LIU B , WANG M , FOROOSH H ,et al. Sparse convolutional neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015.
|
[35] |
ANWAR S , HWANG K , SUNG W . Structured pruning of deep convolutional neural networks[J]. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2017,13(3):32.
|
[36] |
LEBEDEV V , LEMPITSKY V . Fast convnets using group-wise brain damage[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016.
|
[37] |
HU H , PENG R , TAI Y-W ,et al. Network trimming:a data-driven neuron pruning approach towards efficient deep architectures[C]// Proceedings of International Conference on Learning Representations. San Diego:Elsevier, 2016.
|
[38] |
MOLCHANOV P , TYREE S , KARRAS T ,et al. Pruning convolutional neural networks for resource efficient transfer learning[C]// Proceedings of International Conference on Learning Representations. San Diego:Elsevier, 2017.
|
[39] |
KIM Y-D , PARK E , YOO S ,et al. Compression of deep convolutional neural networks for fast and low power mobile applications[C]// International Conference on Learning Representations. San Diego:Elsevier, 2016.
|
[40] |
ALEXANDER N , PODOPRIKHIN D , OSOKIN A ,et al. Tensorizing neural networks[C]// Proceedings of the Advances in Neural Information Processing Systems. Montreal:MIT Press , 2015.
|
[41] |
DENTON E L , ZAREMBA W , BRUNA J ,et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]// Proceedings of the Advances in Neural Information Processing Systems. Montreal:MIT Press, 2014.
|
[42] |
JADERBERG M , VEDALDI A , ZISSERMAN A . Speeding up convolutional neural networks with low rank expansions[C]// Proceedings of the British Machine Vision Conference. Nottingham:BMVA Press, 2014,
|
[43] |
CHEN W , WILSON J , TYREE S ,et al. Compressing neural networks with the hashing trick[C]// Proceedings of the International Conference on Machine Learning.[S.l.:s.n]. 2015.
|
[44] |
COURBARIAUX M , BENGIO Y , DAVID J-P . Training deep neural networks with low precision multiplications[C]// International Conference on Learning Representations. San Diego:Elsevier, 2015.
|
[45] |
DETTMERS T , . 8-bit approximations for parallelism in deep learning[C]// 4th International Conference on Learning Representations. San Diego:Elsevier, 2016.
|
[46] |
RASTEGARI M , ORDONEZ V , REDMON J ,et al. Xnor-net:Imagenet classification using binary convolutional neural networks[C]// Proceedings of the European Conference on Computer Vision. Amsterdam:Springer, 2016.
|
[47] |
LI F , ZHANG B , LIU B . Ternary weight networks[J]. arXiv preprint arXiv:160504711, 2016,
|
[48] |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[C]// Proceedings of the Advances in Neural Information Processing Systems. Montreal:MIT Press, 2015.
|
[49] |
C,BUCILUǎ C , CARUANA R , NICULESCU-MIZIL A , . Model compression[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2006.
|
[50] |
BA J , CARUANA R . Do deep nets really need to bedeep?[C]// Proceedings of the Advances in Neural Information Processing Systems. Montreal:MIT Press , 2014.
|
[51] |
ROMERO A , BALLAS N , KAHOU S E ,et al. Fitnets:hints for thin deep nets[C]// International Conference on Learning Representations. San Diego:Elsevier, 2015.
|
[52] |
ZAGORUYKO S , KOMODAKIS N . Paying more attention to attention:Improving the performance of convolutional neural networks via attention transfer[C]// /International Conference on Learning Representations. San Diego:Elsevier, 2016.
|
[53] |
LI Q , JIN S , YAN J . Mimicking very efficient network for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017.
|
[54] |
LUO P , ZHU Z , LIU Z ,et al. Face model compression by distilling knowledge from neurons[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.[S.l.:s.n. ], 2016.
|
[55] |
LIU Y , CAO J , LI B ,et al. Knowledge distillation via instance relationship graph[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019.
|
[56] |
PENG B , JIN X , LIU J ,et al. Correlation congruence for knowledge distillation[C]// Proceedings of the IEEE International Conference on Computer Vision. Seoul:Elsevier, 2019.
|
[57] |
LAN X , ZHU X , GONG S . Knowledge distillation by on-the-fly native ensemble[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2018.
|
[58] |
BAKER B , GUPTA O , NAIK N ,et al. Designing neural network architectures using reinforcement learning[J]. arXiv:1611.02167, 2016
|
[59] |
ZOPH B , LE Q V . Neural architecture search with reinforcement learning[C]// Proceedings of International Conference on Learning Representations. Toulon:Elsevier, 2017.
|
[60] |
REAL E , MOORE S , SELLE A ,et al. Large-scale evolution of image classifiers[C]// Proceedings of the 34th International Conference on Machine Learning.[S.l.:s.n]. 2017: 2902-2911.
|
[61] |
LIU H , SIMONYAN K , YANG Y . Darts:differentiable architecture search[C]// Proceedings of International Conference on Learning Representations. New Orleans:Elsevier, 2019.
|