电信科学 ›› 2020, Vol. 36 ›› Issue (10): 87-101.doi: 10.11959/j.issn.1000-0801.2020138
修回日期:
2020-04-23
出版日期:
2020-10-20
发布日期:
2020-11-07
作者简介:
许晓荣(1982- ),男,博士后,杭州电子科技大学副教授、硕士生导师,主要研究方向为认知无线电与认知无线携能通信中的中继选择、资源调度与优化、物理层安全技术等|孙明杭(1995- ),男,杭州电子科技大学硕士生,主要研究方向为认知无线携能通信中保障能量效率的资源调度策略优化技术等|沈霖晖(1995- ),男,杭州电子科技大学硕士生,主要研究方向为绿色携能网络中信息传输与能量收集均衡策略设计与优化等|姚英彪(1976- ),男,博士后,杭州电子科技大学教授、硕士生导师,主要研究方向为无线网络的能量有效性与无线资源管理等|冯维(1984- ),女,博士,杭州电子科技大学讲师,主要研究方向为无线多跳网络中的物理层安全策略等
基金资助:
Xiaorong XU(),Minghang SUN,Linhui SHEN,Yingbiao YAO,Wei FENG
Revised:
2020-04-23
Online:
2020-10-20
Published:
2020-11-07
Supported by:
摘要:
认知无线电(CR)与无线携能通信(SWIPT)的结合已经成为当今高能效认知无线通信的研究热点之一。首先阐述了SWIPT与认知SWIPT网络,而后介绍了SWIPT网络中两种接收机结构并给出相应的能量收集公式。然后,给出了认知SWIPT系统模型及其与协作中继技术、MIMO技术相结合进行系统建模的研究进展,并对认知SWIPT网络关键技术的未来研究方向进行了展望。最后,总结了近年来对认知SWIPT网络关键技术的研究成果,为高能效的安全认知SWIPT通信理论研究与未来应用提供了一定的借鉴意义。
中图分类号:
许晓荣,孙明杭,沈霖晖,姚英彪,冯维. 认知无线携能通信的关键技术及其研究进展[J]. 电信科学, 2020, 36(10): 87-101.
Xiaorong XU,Minghang SUN,Linhui SHEN,Yingbiao YAO,Wei FENG. Key technologies and research progresses in cognitive SWIPT[J]. Telecommunications Science, 2020, 36(10): 87-101.
表1
各参考文献SWIPT系统模型、接收机结构与优缺点"
参考文献 | 接收机结构 | 系统模型 | 优化目标 | 优缺点 |
[ | 时隙切换,功率分割,集中式,分布式 | 点对点,单天线 | 速率-能量折中 | 优点:提出了通用的接收机操作,分析了不同架构下的速率-能量域缺点:假设过于理想 |
[ | 时隙切换 | 点对点,单天线 | 速率/能量折中 | 优点:考虑了窄带平坦衰落信道的时变信道干扰,推导了时隙切换的的最佳模式切换策略,同时研究了接收电路能耗对系统的影响缺点:模型为单一点对点通信,天线数较少,模型简单 |
[ | 时隙切换 | 多用户,MIMO | 遍历容量与平均收集能量之间的折中 | 优点:设计了多用户调度方案,达到了速率-能量折中,同时设计了保障能效的两种公平调度方案缺点:每个时隙只选择一个用户进行信息传输,其余用户进行能量收集,系统吞吐量有待进一步的提升 |
[ | 时隙切换功率分配 | 3节点,MIMO | 速率-能量折中 | 优点:对不同情况下的SWIPT 接收机均提出了可达的速率-能量域缺点:未推广到多用户场景 |
[ | 时隙切换 | 双跳,多天线 | 速率-能量折中 | 优点:研究了两种CSI情况下的预编码器,分析了对应的速率-能量域,可应用于多天线发送节点中缺点:未考虑到未知CSI情况下的预编码器设计 |
[ | 时隙切换 | MISO | 最大化能量收集 | 优点:多天线广播系统,将带约束的非凸问题转换为松弛半定规划问题缺点:仅为双跳模型,较为简单 |
[ | 动态天线切换 | MIMO | 最优路径和最小化中断概率的分配策略 | 优点:推导了中断概率的闭式表达式,可以推广到多用户干扰场景,复杂度低缺点:为了降低复杂度,天线分配算法较为简单 |
[ | 功率分割 | 放大转发(amplifyand-forward,AF)双向中继 | 最大化能量效率 | 优点:提出了联合功率分配比的优化方案,可以应用到其他场景缺点:只给出局部最优解和等功率分配方案的闭式表达式 |
[ | 分用户 | MISO | 最大化速率和最大化能量以及之间的关系 | 优点:考虑微小区场景,为了解决非凸性问题,设计了两个波束成形器缺点:仅考虑上行信道未考虑不完美CSI对系统的影响,对于同信道如何部署在多小区有待研究 |
[ | 功率分割 | 多个传感器节点簇和一个汇聚节点 | 最大化能量效率 | 优点:应用于协作式集群无线传感器网络中,利用分数规划和对偶分解,设计了功率分配和中继选择的分布式迭代算法,以解决非凸优化问题缺点:未考虑协作式集群无线传感器网络的用户间干扰与同频复用问题 |
表2
认知SWIPT参考文献中的系统模型、优化目标与优缺点"
参考文献 | 系统模型 | 优化目标 | 优缺点 |
[ | 单向中继,双向中继,多节点 | 最大化吞吐量,最大化和速率 | 优点:详细分析了单向和双向中继认知SWIPT网络,同时给出复杂度低的最大化吞吐量次优解缺点:未考虑收发节点距离和干扰因素 |
[ | 多认知节点 | 最大化总吞吐量 | 优点:利用马尔可夫决策模式选择,有效实现能量收集与瞬时信息吞吐量(速率)的均衡缺点:主用户和认知节点数较少情况 |
[ | 多主节点,多认知节点 | 最大化次网络吞吐量 | 优点:基于经典认知无线电网络模型,提出了一种新的主次网络共存方法;缺点:需要考虑各节点之间的距离以及主次网络范围和当前节点状态,复杂度较高 |
[ | 单主节点,单认知发送节点,多认知接收节点 | 给定中断概率下的最佳阈值 | 优点:给出了遍历容量、误符号率、吞吐量和收集能量的解析表达式,并给出满足目标中断概率的最佳阈值缺点:主要考虑认知网络,对于主网络的分析较少 |
[ | 单主收发节点,单收发认知节点 | 最小化次用户的中断概率 | 优点:提出了由功率和传输概率控制的新型传输方案缺点:节点数目较少,推广到实际情况存在一定的难度 |
[ | 单主收发节点,单收发认知节点 | 最大化认知用户的信息速率 | 优点:研究了两个系统之间的联合信息与能量协作缺点:只考虑一对主用户和一对认知用户情况,同时已知CSI |
[1] | AKYILDIZ I F , LEE W Y , VURAN M C ,et al. Next generation/dynamic spectrum access/cognitive radio wireless networks:a survey[J]. Computer Networks, 2006,50(13): 2127-2159. |
[2] | JEON J , EPHREMIDES A . The stability region of random multiple access under stochastic energy harvesting[C]// Proceedings of 2011 IEEE International Symposium on Information Theory Proceedings (ISIT). Piscataway:IEEE Press, 2011: 1796-1800. |
[3] | OZEL O , TUTUNCUOGLU K , YANG J ,et al. Transmission with energy harvesting nodes in fading wireless channels:optimal policies[J]. IEEE Journal on Selected Areas in Communications, 2011,29(8): 1732-1743. |
[4] | GURAKAN B , OZEL O , YANG J ,et al. Energy cooperation in energy harvesting communications[J]. IEEE Transactions on Communications, 2013,61(12): 4884-4898. |
[5] | VARSHNEY L R , . Transporting information and energy simultaneously[C]// Proceedings of 2008 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2008: 1612-1616. |
[6] | ZHOU X , ZHANG R , HO C K . Wireless information and power transfer:architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013,61(11): 4754-4767. |
[7] | LIU L , ZHANG R , CHUA K C . Wireless information transfer with opportunistic energy harvesting[J]. IEEE Transactions on Wireless Communications, 2013,12(1): 288-300. |
[8] | MORSI R , MICHALOPOULOS D , SCHOBER R . Multi-user scheduling schemes for simultaneous wireless information and power transfer over fading channels[C]// Proceedings of 2014 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2014: 4994-4999. |
[9] | ZHANG R , HO C K . MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013,12(5): 1989-2001. |
[10] | XING C , WANG N , NI J ,et al. MIMO beamforming designs with partial CSI under energy harvesting constraints[J]. IEEE Signal Processing Letters, 2013,20(4): 363-366 |
[11] | CHALISE B K , MA W K , ZHANG Y D ,et al. Optimum performance boundaries of OSTBC based AF-MIMO relay system with energy harvesting receiver[J]. IEEE Transactions on Signal Processing, 2013,61(17): 4199-4213. |
[12] | XIANG Z , TAO M . Robust beamforming for wireless information and power transmission[J]. IEEE Wireless Communications Letters, 2012,4(1): 372-375. |
[13] | WU S X , LI Q , MA W K ,et al. Robust transmit designs for an energy harvesting multicast system[C]// Proceedings of 2014 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2014: 4748-4752. |
[14] | NG D W K , LO E S , SCHOBER R . Robust beamforming for secure communication in systems with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2014,13(8): 4599-4615. |
[15] | LI Q , MA W K . Robust artificial noise-aided transmit optimization for achieving secrecy and energy harvesting[C]// Proceedings of 2014 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2014: 1596-1600. |
[16] | KRIKIDIS I , SASAKI S , TIMOTHEOU S ,et al. A low complexity antenna switching for joint wireless information and energy transfer in MIMO relay channels[J]. IEEE Transactions on Communications, 2014,62(5): 1577-1587. |
[17] | ZHOU X , LI Q . Energy efficiency optimization for SWIPT AF two-way relay networks[J]. Electronics Letters, 2017,53(6): 436-438. |
[18] | SHENG M , WANG L , WANG X ,et al. Energy-efficient beam-forming in MISO heterogeneous cellular networks with wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2016,34(4): 954-968. |
[19] | GUO S , WANG F , YANG Y ,et al. Energy-efficient cooperative transmission for simultaneous wireless information and power transfer in clustered wireless sensor networks[J]. IEEE Trans actions on Communications, 2015,63(11): 4405-4417. |
[20] | 卢晓梅 . 认知无线电系统的携能关键技术研究[D]. 北京:北京邮电大学, 2014. |
LU X M . Research on key SWIPT technology in cognitive radio systems[D]. Beijing:Beijing University of Posts and Telecommunications, 2014. | |
[21] | PARK S , HEO J , KIM B ,et al. Optimal mode selection for cognitive radio sensor networks with RF energy harvesting[C]// Proceedings of 2012 IEEE 23rd International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway:IEEE Press, 2012: 2155-2159. |
[22] | LEE S , ZHANG R , HUANG K . Opportunistic wireless energy harvesting in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2013,12(9): 4788-4799. |
[23] | SIBOMANA L , ZEPERNICK H , TRAN H . Wireless information and power transfer in an underlay cognitive radio network[C]// Proceedings of 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS). Piscataway:IEEE Press, 2014: 1-7. |
[24] | JIHYUN S , DONGWOO K . Simultaneous wireless information and power transfer for cognitive radio systems with average energy harvesting constraint[C]// Proceedings of 2015 12th Annual IEEE Consumer Communications and Networking Conference. Piscataway:IEEE Press, 2015: 156-157. |
[25] | ZHENG G , HO Z , JORSWIECK E A ,et al. Information and energy cooperation in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2014,62(9): 2290-2303. |
[26] | PARK S , HONG D . Achievable throughput of energy harvesting cognitive radio network[J]. IEEE Transactions on Wireless Communications, 2014,13(2): 1010-1022. |
[27] | MOUSAVIFAR S A , LIU L , LEUNG C ,et al. Wireless energy harvesting and spectrum sharing in cognitive radio[C]// Proceedings of 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). Piscataway:IEEE Press, 2014: 1-5. |
[28] | LE T , SHIN O . Wireless energy harvesting in cognitive radio with opportunistic relays selection[C]// Proceedings of 2015 IEEE 26th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications (PIMRC). Piscataway:IEEE Press, 2015: 949-953. |
[29] | YIN S , ZHANG E , QU Z ,et al. Optimal cooperation strategy in cognitive radio systems with energy harvesting[J]. IEEE Transactions on Wireless Communications, 2014,13(9): 4693-4707. |
[30] | WANG Z , CHEN Z , XIA B ,et al. Cognitive relay networks with energy harvesting and information transfer:design,analysis,and optimization[J]. IEEE Transactions on Wireless Communications, 2016,15(4): 2562-2576. |
[31] | YANG Z , DING Z , FAN P ,et al. Outage performance of cognitive relay networks with wireless information and power transfer[J]. IEEE Transactions on Vehicular Technology, 2016,65(5): 3828-3833. |
[32] | YAN J , LIU Y . A dynamic SWIPT approach for cooperative cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2017,66(12): 11122-11136. |
[33] | SHAFIE A EL , AL-DHAHIR N , HAMILA R . Cooperative access schemes for efficient SWIPT transmissions in cognitive radio networks[C]// Proceedings of 2015 IEEE Globecom Workshops (GC Wkshps). Piscataway:IEEE Press, 2015: 1-6. |
[34] | MUKHERJEE A , ACHARYA T , KHANDAKER M R A . Outage analysis for SWIPT-enabled two-way cognitive cooperative communications[J]. IEEE Transactions on Vehicular Technology, 2018,67(9): 9032-9036. |
[35] | AL-HABOB A A , SALHAB A M , ZUMMO S A et al . Multi-destination cognitive radio relay network with SWIPT and multiple primary receivers[C]// Proceedings of 2017 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2017: 1-6. |
[36] | NGUYEN V D , DINH-VAN S , SHIN O S . Opportunistic relaying with wireless energy harvesting in a cognitive radio system[C]// Proceedings of 2015 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2015: 87-92. |
[37] | AL-HABOB A A , SALHAB A M , ZUMMO S A . An efficient time switching relaying protocol for multiuser cognitive radio relay networks with SWIPT[J]. Computer Physics Communications, 2018,30(1): 86-96. |
[38] | LU X , XU W , LI S ,et al. Simultaneous information and power transfer for relay-assisted cognitive radio networks[C]// Proceedings of 2014 IEEE International Conference on Communications Workshops (ICC). Piscataway:IEEE Press, 2014: 331-336. |
[39] | LU X , XU W , LI S ,et al. Simultaneous wireless information and power transfer for cognitive two-way relaying networks[C]// Proceedings of 2014 IEEE 25th Annual International Symposium on Personal,Indoor,and Mobile Radio Communication. Piscataway:IEEE Press, 2014: 748-752. |
[40] | 王翔 . 认知中继系统中携能关键技术研究[D]. 北京:北京邮电大学, 2016. |
WANG X . Research on key SWIPT technologies in cognitive relay systems[D]. Beijing:Beijing University of Posts and Telecommunications, 2016. | |
[41] | WU Y , CHEN X . Robust beamforming and power splitting for secrecy wireless information and power transfer in cognitive relay networks[J]. IEEE Communications Letters, 2016,20(6): 1152-1155. |
[42] | XU D , LI Q . Optimization of multiuser multichannel cognitive radio networks with wireless information and power transfer[C]// Proceedings of 2016 8th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2016: 1-5. |
[43] | ZHANG R , LIANG Y C . Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2008,2(1): 88-102. |
[44] | PHAN K T , VOROBYOV S A , SIDIROPOULOS N D ,et al. Spectrum sharing in wireless networks via QoS-aware secondary multicast beamforming[J]. IEEE Transactions on Signal Processing, 2009,57(6): 2323-2335. |
[45] | ZHANG R , LIANG Y C , CUI S . Dynamic resource allocation in cognitive radio networks[J]. IEEE Signal Processing Magazine, 2010,27(3): 102-114. |
[46] | MOHJAZI L , AHMED I , MUHAIDAT S ,et al. Downlink beamforming for SWIPT multi-user MISO underlay cognitive radio networks[J]. IEEE Communications Letter, 2017,21(2): 434-437. |
[47] | XU C , ZHANG Q , LI Q ,et al. Robust transceiver design for wireless information and power transmission in underlay MIMO cognitive radio networks[J]. IEEE Communications Letters, 2014,18(9): 1665-1668. |
[48] | BENKHELIFA F , ALOUINI M . A thresholding-based antenna switching in MIMO cognitive radio networks with SWIPTenabled secondary receiver[C]// Proceedings of 2017 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2017: 1-6. |
[49] | NG D W K , LO E S , SCHOBER R . Multi-objective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer[J]. IEEE Transactions on Vehicular Technology, 2016,65(5): 3166-3184. |
[50] | ZHOU F,LI Z , CHENG J , LI Q . Robust an-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT[J]. IEEE Transactions on Wireless Communications, 2017,16(4): 2450-2464. |
[51] | YUAN Y , DING Z . Outage constrained secrecy rate maximization design with SWIPT in MIMO-CR systems[J]. IEEE Transactions on Vehicular Technology, 2018,67(6): 5475-5480. |
[52] | TUAN P V , KOO I . Optimal multiuser MISO beamforming for power-splitting SWIPT cognitive radio networks[J]. IEEE Access, 2017,5(1): 14141-14153. |
[53] | 洪鑫龙, 许晓荣, 石振波 . 无线携能网络中一种基于时隙切换的中继辅助信能同传协议[J]. 信号处理, 2018,34(12): 1467-1473. |
HONG X L XU X R , SHI Z B . A relay-aided information and power transfer protocol based on time switching structure in SWIPT[J]. Journal of Signal Processing, 2018,34(12): 1467-1473. | |
[54] | 洪鑫龙, 许晓荣, 姚英彪 . 无线携能通信中一种能量效率优先的缓存队列机制中继选择方案[J]. 电信科学, 2018,34(3): 67-75. |
HONG X L , XU X R , YAO Y B . Energy-efficiency based buffer-aided relay selection scheme in SWIPT[J]. Telecommunications Science, 2018,34(3): 67-75. | |
[55] | 石振波, 许晓荣, 孙明杭 ,等. 携能网络中保障能量效率的缓存队列中继选择与能量分配方案[J]. 信号处理, 2019,35(11): 1880-1887. |
SHI Z B , XU X R , SUN M H ,et al. Energy-efficiency priority based buffer-aided relay selection and power allocation strategy in SWIPT network[J]. Journal of Signal Processing, 2019,35(11): 1880-1887. | |
[56] | 伍伟伟, 许晓荣, 王云川 ,等. 采用注水因子辅助搜索的能量效率优先子载波功率联合优化算法[J]. 西安交通大学学报, 2017,51(8): 59-64.71. |
WU W W , XU X R , WANG Y C ,et al. Joint optimization algorithm for subcarrier and power with priority of energy efficiency based on water-filling factor aided search[J]. Journal of Xi’an Jiaotong University, 2017,51(8): 59-64,71. | |
[57] | 王兴鹏, 许晓荣, 胡安迪 ,等. Nakagami-m 衰落信道下存在窃听攻击的认知中继网络安全性与可靠性折中方案[J]. 电信科学, 2018,34(12): 24-32. |
WANG X P , XU X R , HU A D ,et al. Security-reliability tradeoff scheme for cognitive relay networks with eavesdropping attack over Nakagami-m fading channels[J]. Telecommunications Science, 2018,34(12): 24-32. | |
[58] | ZHOU F , CHU Z , SUN H ,et al. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT[J]. IEEE Journal on Selected Areas in Communications, 2018,36(4): 918-931. |
[59] | SU R , WANG Y , SUN R . Destination-assisted jamming for physical-layer security in SWIPT cognitive radio systems[C]// Proceedings of 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-6. |
[60] | SONG Z , WANG X , LIU Y ,et al. Joint spectrum resource allocation in NOMA-based cognitive radio network with SWIPT[J]. IEEE Access, 2019,7(1): 89594-89603. |
[61] | SUN H , ZHOU F , HU R Q ,et al. Robust beamforming design in a NOMA cognitive radio network relying on SWIPT[J]. IEEE Journal on Selected Areas in Communications, 2019,37(1): 142-155. |
[62] | WU Y , SCHOBER R , NG D W K ,et al. Secure massive MIMO transmission with an active eavesdropper[J]. IEEE Transactions on Information Theory, 2016,62(7): 3880-3990. |
[63] | ZHANG Y , WANG H K , YANG Q ,et al. Secrecy sum rate maximization in non-orthogonal multiple access[J]. IEEE Communications Letters, 2016,20(5): 930-933. |
[64] | WU Y , SCHOBER R , NG D W K ,et al. Secure massive MIMO transmission in the presence of an active eavesdropper[C]// Proceedings of 2015 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2015: 1434-1440. |
[65] | PEI Y , LIANG Y C , ZHANG L ,et al. Secure communication over MISO cognitive radio channels[J]. IEEE Transactions on Wireless Communications, 2010,9(4): 1494-1502. |
[66] | ZOU Y , LI X , LIANG Y C . Secrecy outage and diversity analysis of cognitive radio systems[J]. IEEE Journal on Selected Areas in Communications, 2014,32(11): 2222-2236. |
[67] | ZOU Y , ZHU J , LI X ,et al. Relay selection for wireless communications against eavesdropping:a security-reliability trade-off perspective[J]. IEEE Network, 2016,30(5): 74-79. |
[68] | ZHANG Q , LI Q , QIN J . Robust beamforming for non-orthogonal multiple-access systems in MISO channels[J]. IEEE Transactions on Vehicular Technology, 2016,65(12): 10231-10236. |
[69] | ALAVI F , CUMANAN K , DING Z ,et al. Robust beamforming techniques for non-orthogonal multiple access systems with bounded channel uncertainties[J]. IEEE Communications Letters, 2017,21(9): 2033-2036. |
[70] | WANG Z , CHEN Z , XIA B ,et al. Cognitive relay networks with energy harvesting and information transfer:design,analysis and optimization[J]. IEEE Transactions on Wireless Communications, 2016,15(4): 2562-2576. |
[71] | CHENG Y , YANG J , DING J ,et al. Outage performance analysis of underlay cognitive DF relaying network with SWIPT in Nakagami-m fading environment[C]// Proceedings of 2017 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway:IEEE Press, 2017: 1-5. |
[72] | COARASA A H , NINTANAVONGSA P , SANYAL S ,et al. Impact of mobile transmitter sources on radio frequency wireless energy harvesting[C]// Proceedings of 2013 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2013: 573-577. |
[73] | CAO H , LIQUN F , HONGNING D . Throughput analysis of the two-way relay system with network coding and energy harvesting[C]// Proceedings of 2017 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2017: 1-6. |
[74] | HOSSAIN M A , MD N R , YAU K A ,et al. A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges[J]. IEEE Access, 2019,7(1): 19166-19198. |
[1] | 丁一凡, 李光球, 李辉. 窃听者随机分布SWIPT-NOMA系统的物理层安全[J]. 电信科学, 2022, 38(3): 133-142. |
[2] | 许晓荣, 朱薇薇, 包建荣, 朱卫平, 冯维, 姚英彪. IRS辅助的SWIPT系统中基于能效优先的波束成形设计与优化[J]. 电信科学, 2022, 38(1): 36-46. |
[3] | 陈健锋, 崔苗, 张广驰, 武庆庆, 曾慧. 双智能反射平面辅助无线携能通信系统的安全通信优化[J]. 电信科学, 2022, 38(1): 47-60. |
[4] | 钱辉,李光球,丁一凡. 随机位置窃听场景下SWIPT系统的物理层安全性能[J]. 电信科学, 2020, 36(5): 65-72. |
[5] | 朱明英,邢豫,王海霞,张金娟. 需求建模方法在电信支撑系统研究中的应用探讨[J]. 电信科学, 2010, 26(11): 24-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|