电信科学 ›› 2020, Vol. 36 ›› Issue (9): 1-13.doi: 10.11959/j.issn.1000-0801.2020263
• 综述 • 下一篇
闫富朝,刘怡良,韩帅,孟维晓
修回日期:
2020-08-27
出版日期:
2020-09-20
发布日期:
2020-09-27
作者简介:
闫富朝(1996- ),男,哈尔滨工业大学硕士生,主要研究方向为物理层安全与空天地通信网络|刘怡良(1990- ),男,哈尔滨工业大学博士生,主要研究方向为物理层安全、车载通信安全|韩帅(1981- ),男,博士,哈尔滨工业大学教授、博士生导师,主要研究方向为卫星通信、宽带无线通信、物理层安全和室内定位等|孟维晓(1968- ),男,博士,哈尔滨工业大学电子与信息工程学院副院长、教授、博士生导师,主要研究方向为无线通信与网络、空天地信息传输、精确定位与无缝导航
基金资助:
Fuchao YAN,Yiliang LIU,Shuai HAN,Weixiao MENG
Revised:
2020-08-27
Online:
2020-09-20
Published:
2020-09-27
Supported by:
摘要:
空天地一体化通信网络是未来无线通信的发展趋势,其固有的广播特性和广阔的覆盖区域,将导致网络通信系统面临严重的安全威胁。如何保证空天地通信网络的安全性是一个亟待解决的问题。物理层安全技术作为一种有效的安全手段,在无线通信领域受到越来越多的关注。介绍了物理层安全的基础以及空天地通信信道模型,并对物理层安全中常见的窃听编码、波束成形、人工噪声、中继协作干扰和物理层密钥加密等技术进行了介绍和总结,最后提出了空天地通信网络中物理层安全面临的挑战和未来的发展趋势。
中图分类号:
闫富朝,刘怡良,韩帅,孟维晓. 空天地通信网络中物理层安全技术综述[J]. 电信科学, 2020, 36(9): 1-13.
Fuchao YAN,Yiliang LIU,Shuai HAN,Weixiao MENG. A survey of physical layer security in space-air-ground communication and networks[J]. Telecommunications Science, 2020, 36(9): 1-13.
[1] | 韩帅, 台祥雪, 孟维晓 . 空天地通信网络的物理层安全系统模型与关键技术[J]. 电信科学, 2018,34(3): 23-31. |
HAN S , TAI X X , MENG W X . Physical layer security for the air-space-ground communication networks[J]. Telecommunications Science, 2018,34(3): 23-31. | |
[2] | LI B , FEI Z S , CAI Q ,et al. Physical-layer security in space information networks:a survey[J]. IEEE Internet of things journal, 2020,7(1): 33-52. |
[3] | SHANNON C E . Communication theory of secrecy systems[J]. Bell System Technology Journal, 1949,28(4): 656-715. |
[4] | WYNER A D . The wire-tap channel[J]. Bell System Technology Journal, 1975,54(8): 1355-1387. |
[5] | WANG D , BAI B , ZHAO W B ,et al. A survey of optimization approaches for wireless physical layer security[J]. IEEE Communications Surveys & Tutorials, 2019,21(2): 1878-1910. |
[6] | MUKHERJEE A , FAKOORIAN S A A , HUANG J ,et al. Principles of physical layer security in multiuser wireless networks:a survey[J]. IEEE Communications Surveys & Tutorials, 2014,16(3): 1550-1573. |
[7] | LIU Y , CHEN H H , WANG L . Physical layer security for next generation wireless networks:theories,technologies,and challenges[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 347-376. |
[8] | ZOU Y , ZHU J , WANG X ,et al. A survey on wireless security:Technical challenges,recent advances,and future trends[J]. Proceedings of the IEEE, 2016,104(9): 1727-1765. |
[9] | POOR H V , SCHAEFER R F . Wireless physical layer security[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(1): 19-26. |
[10] | BLOCH M , BARROS J . Physical-layer security:from information theory to security engineering[D]. Cambridge:Cambridge University, 2008. |
[11] | GUO K , AN K , ZHANG B ,et al. Physical layer security for hybrid satellite terrestrial relay networks with joint relay selection and user scheduling[J]. IEEE Access, 2018,6(1): 55815-55827. |
[12] | ABDI A , LAU W C , ALUINI M S ,et al. A new simple model for land mobile satellite channels:First- and second-order statistics[J]. IEEE Transactions on Wireless Communications, 2003,2(3): 519-528. |
[13] | ZENG Y , WU Q Q , ZHANG R . Accessing from the sky:a tutorial on UAV communications for 5G and beyond[J]. Proceedings of the IEEE, 2019,107(12): 2327-2375. |
[14] | 3GPP.Study on channel model for frequencies from 0.5 to 100 GHz,document:TR 38.901[S]. 2017. |
[15] | HAMAMREH J M , FURQAN H M , ARSLAN H . Classifications and applications of physical layer security techniques for confidentiality:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(2): 1773-1828. |
[16] | OZAROW L H , WYNER A D . Wire-tap channel II[J]. Bell Syst.Tech.J, 1984,63(10): 2135-2157. |
[17] | THANGARAJ A , DIHIDAR S , ALDERBANK A R ,et al. Applications of LDPC codes to the wiretap channel[J]. IEEE Transactions of Information Theory, 2007,53(8): 2933-2945. |
[18] | LIU R , LIANG Y , POOR H V ,et al. Secure nested codes for type II wiretap channels[C]// Proceedings of IEEE Information Theory Workshop. Piscataway:IEEE Press, 337-342. |
[19] | HSU C H , ANASTASOPOULAS A . Capacity achieving LDPC codes through puncturing[J]. IEEE Transactions of Information Theory, 2008,54(10): 4698-4706. |
[20] | KLINC D , HA J , MCLAUGHLIN S W ,et al. LDPC codes for the Gaussian wiretap channel[J]. IEEE Transactions on Information Forensics and Security, 2011,6(3): 532-540. |
[21] | BALDI M , RICCIUTELLI G , MATURO N ,et al. Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel[C]// Proceedings of IEEE International Conference on Communications Workshop (ICCW). Piscataway:IEEE Press, 2015, 435-440. |
[22] | MAHDAVIFAR H , VARDY A . Achieving the secrecy capacity of wiretap channels using polar codes[J]. IEEE Transactions of Information Theory, 2011,57(10): 6428-6443. |
[23] | NOORAIEPOUR A , DUMAN T M . Randomized convolutional codes for the wiretap channel[J]. IEEE Transactions on Wireless Communications, 2017,65(8): 3442-3452. |
[24] | áNGELES V C , HAYASHI M . Information-theoretic physical layer security for satellite channels[C]// Proceedings of Aerospace Conference. Piscataway:IEEE Press, 2017: 1-14. |
[25] | 谢骐宇 . 多波束卫星通信系统中的物理层安全传输算法设计与实现[D]. 长沙:湖南大学, 2018. |
XIE Q Y . Design and implementation of physical layer secure transmission algorithm in multibeam satellite communication system[D]. Changsha:Hunan University, 2018. | |
[26] | GAO Y , AO H , FENG Z ,et al. Modeling and practise of satellite communication systems using physical layer security:a survey[C]// Proceedings of IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). Piscataway:IEEE Press, 2017: 829-832. |
[27] | ZHENG G , ARAPOGLOU P D , OTTERSTEN B . Physical layer security in multibeam satellite systems[J]. IEEE Transactions on Wireless Communications, 2012,11(2): 852-863. |
[28] | LU W X , JIANG Y W , YIN C Y ,et al. Security beamforming algorithms in multibeam satellite systems[C]// Proceedings of IEEE 2nd Advanced Information Technology,Electronic and Automation Control Conference (IAEAC). Piscataway:IEEE Press, 2017: 1272-1277. |
[29] | MA D , LIU X , WANG X ,et al. On the performance indexes of physical layer security for multi-beam satellite networks[C]// Proceedings of International Conference on Wireless Communications & Signal Processing. Piscataway:IEEE Press, 2015: 1-6. |
[30] | GOEL S , NEGI R . Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008,7(6): 2180-2189. |
[31] | ZHANG X , ZHOU X Y , MCKAY M R . On the design of artificial-noise aided secure multi-antenna transmission in slow fading channels[J]. IEEE Transactions on Vehicular Technology, 2013,62(5): 2017-2181. |
[32] | LIU S Y , HONG Y , VITERBO E . Artificial noise revisited[J]. IEEE Transactions on Information Theory, 2015,61(7): 3901-3911. |
[33] | LIU Y L , CHEN H H , WANG L G . Secrecy capacity analysis of artificial noisy MIMO channels -an approach based on ordered eigenvalues of wishart matrices[J]. IEEE Transactions on Information Forensics and Security, 2017,12(3): 617-630. |
[34] | BHATNAGAR M R , ARTI M K . Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels[J]. IEEE Communication Letters, 2013,17(10): 1912-1915. |
[35] | PAILLASSA B , ESCRIG B , DHAOU R ,et al. Improving satellite services with cooperative communications[J]. International Journal of Satellite Communication Networks, 2011,29(6): 479-500. |
[36] | ARTI M K , JAIN K . Relay selection-based hybrid satellite-terrestrial communication systems[J]. IET Communications, 2017,11(17): 2566-2574. |
[37] | EVANS B . Integration of satellite and terrestrial systems in future multimedia communications[J]. IEEE Transactions on Wireless Communications, 2005,12(5): 72-80. |
[38] | KUANG L , CHEN X , JIANG C ,et al. Radio resource management in future terrestrial-satellite communication networks[J]. IEEE Transactions on Wireless Communications, 2017,24(5): 81-87. |
[39] | AN K , LIN M , LIANG T ,et al. Secure transmission in multi-antenna hybrid satellite-terrestrial relay networks in the presence of eavesdropper[C]// Proceedings of IEEE International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2015: 1-5. |
[40] | YAN Y , ZHANG B , GUO D ,et al. Joint beamforming and jamming design for secure cooperative hybrid satellite-terrestrial relay network[C]// Proceedings of IEEE 25th Wireless & Optical Communications Conference (WOCC). Piscataway:IEEE Press, 2016: 1-5. |
[41] | CHEN C , SONG C . Secure communications in hybrid cooperative satellite-terrestrial networks[C]// Proceedings of IEEE 87th Vehicular Technology Conference (VTC-Spring). Piscataway:IEEE Press, 2017: 1-5. |
[42] | BANKEY V , UPADHYAY P K . Secrecy outage analysis of hybrid satellite-terrestrial relay networks with opportunistic relaying schemes[C]// Proceedings of IEEE 85th Vehicular Technology Conference(VTC Spring). Piscataway:IEEE Press, 2017: 1-5. |
[43] | CAO W , ZOU Y , YANG Z ,et al. Secrecy outage probability of hybrid satellite-terrestrial relay networks[C]// Proceedings of IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2017: 1-5. |
[44] | CAO W , ZOU Y , YANG Z ,et al. Relay selection for improving physical-layer security in hybrid satellite-terrestrial relay networks[J]. IEEE Access, 2018,6(2): 65275-65285. |
[45] | GUO K , AN K , ZHANG B ,et al. Physical layer security for hybrid satellite terrestrial relay networks with joint relay selection and user scheduling[J]. IEEE Access, 2018,6(2): 55815-55827. |
[46] | BANKEY V , UPADHYAY P K . Physical layer security of multiuser multirelay hybrid satellite-terrestrial relay networks[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2488-2501. |
[47] | LIU J , WANG J , LIU W ,et al. A novel cooperative physical layer security scheme for satellite downlinks[J]. Chinese Journal of Electronics, 2018,27(4): 860-865. |
[48] | 邱晓英 . 智能化物理层安全认证及传输技术研究[D]. 北京:北京邮电大学, 2019. |
QIU X Y . Research on intelligent physical layer security authentication and transmission technology[D]. Beijing:Beijing University of Posts and Telecommunications, 2019. | |
[49] | KOORAPATY H , HASSAN A A , CHENNAKESHU S . Secure information transmission for mobile radio[J]. IEEE Communications Letters, 2000,4(2): 52-55. |
[50] | AONO T , HIGUCHI K , OHIRA T ,et al. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels[J]. IEEE Transactions on Antennas and Propagation, 2005,53(11): 3776-3784. |
[51] | ABDALLAH Y , LATIF M A , YOUSSEF M ,et al. Keys through ARQ:theory and practice[J]. IEEE Transactions Information Forensics Security, 2011,6(3): 737-751. |
[52] | JANA S , . On the effectiveness of secret key extraction from wireless signal strength in real environments[C]// Proceedings of ACM MobiCom,Piscataway:IEEE Press, 2009: 321-332. |
[53] | WANG Q , SU H , REN K ,et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks[C]// Proceedings of IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2011: 1422-1430. |
[54] | WU C Y , LAN P C , YEH P C ,et al. Practical physical layer security schemes for MIMO-OFDM systems using precoding matrix indices[J]. IEEE Journal on Selected Areas in Communications, 2013,31(9): 1687-1700. |
[55] | LIU H , WANG Y , YANG J ,et al. Fast and practical secret key extraction by exploiting channel response[C]// Proceedings of IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2013: 3048-3056. |
[1] | 沈静洁, 李光球, 罗延翠, 刘会芝. 过时CSI下全双工中继辅助D2D网络的物理层安全[J]. 电信科学, 2023, 39(3): 89-99. |
[2] | 丁一凡, 李光球, 李辉. NOMA-D2D协作无线系统的物理层安全[J]. 电信科学, 2022, 38(9): 83-94. |
[3] | 丁一凡, 李光球, 李辉. 窃听者随机分布SWIPT-NOMA系统的物理层安全[J]. 电信科学, 2022, 38(3): 133-142. |
[4] | 陈健锋, 崔苗, 张广驰, 武庆庆, 曾慧. 双智能反射平面辅助无线携能通信系统的安全通信优化[J]. 电信科学, 2022, 38(1): 47-60. |
[5] | 程英, 李光球, 沈静洁, 韦亮. MF中继选择系统的物理层安全性能[J]. 电信科学, 2021, 37(9): 95-104. |
[6] | 徐赛, 韩帅, 孟维晓. 一种基于合作干扰的主窃信道安全传输方法[J]. 电信科学, 2021, 37(6): 105-114. |
[7] | 钱辉,李光球,丁一凡. 随机位置窃听场景下SWIPT系统的物理层安全性能[J]. 电信科学, 2020, 36(5): 65-72. |
[8] | 任婷洁,李光球,程英. 多中继与多用户选择的中继系统安全性能分析[J]. 电信科学, 2019, 35(8): 111-119. |
[9] | 涂山山,于金亮,孟远,WWAQAS M,刘雷. 面向5G雾计算中基于Q-learning的安全中继节点选择方法[J]. 电信科学, 2019, 35(7): 60-68. |
[10] | 韩帅,台祥雪,孟维晓. 空天地通信网络的物理层安全系统模型与关键技术[J]. 电信科学, 2018, 34(3): 23-31. |
[11] | 冯友宏,杨志,丁绪星,岳雪峰,李琦琦,谢小娟. 无线协作网络中的最优中继选择方案及中断概率分析[J]. 电信科学, 2018, 34(11): 87-95. |
[12] | 李光球,王占湾,任婷洁,刘帅帅. 相关衰落信道上WCDMA系统的安全性能分析[J]. 电信科学, 2018, 34(10): 9-17. |
[13] | 周巍,高锐锋,吉晓东,包志华. 基于协作干扰的全双工中继系统混合安全传输协议[J]. 电信科学, 2017, 33(1): 16-23. |
[14] | 张蓉,谢显中,雷维嘉. 一种基于友好干扰者协助的区别信道估计机制[J]. 电信科学, 2015, 31(3): 104-108. |
[15] | 张 蓉,谢显中,雷维嘉. 一种基于友好干扰者协助的区别信道估计机制[J]. 电信科学, 2015, 31(3): 2015072-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|