[1] |
李玥 . 机器学习的分类、聚类研究[J]. 电脑知识与技术, 2020,16(4): 161-162.
|
|
LI Y . Research on classification and clustering of machine learning[J]. Computer Knowledge and Technology, 2020,16(4): 161-162.
|
[2] |
蔡志荣 . 基于熵权的模糊综合评价法在学习质量评价中的应用[J]. 计算机时代, 2018.(12): 75-77.
|
|
CAI Z R . Application of entropy weight based fuzzy comprehensive evaluation method in learning quality evaluation[J]. Computer Era, 2018.(12): 75-77.
|
[3] |
刘竞妍, 张可, 王桂华 . 综合评价中数据标准化方法比较研究[J]. 数字技术与应用, 2018,36(6): 84-85.
|
|
LIU J Y , ZHANG K , WANG G H . Comparative study on data standardization methods in comprehensive evaluation[J]. Digital Technology & Application, 2018,36(6): 84-85.
|
[4] |
展金梅, 陈君涛 . 聚类集成算法中度量方法[J]. 电子技术与软件工程, 2020(3): 170-171.
|
|
CHEN J M , CHEN J T . Measurement method in clustering integration algorithm[J]. Electronic Technology & Software Engineering, 2020(3): 170-171.
|
[5] |
贺玲, 吴玲达, 蔡益朝 . 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2017,(1): 10-13.
|
|
HE L , WU L D , CAI Y C . Survey of clustering algorithms in data mining[J]. Application Research of Computers, 2017(1): 10-13.
|
[6] |
周爱武, 于亚飞 . K-means聚类算法的研究[J]. 计算机技术与发展, 2011,21(2): 62-65.
|
|
ZHOU A W , YU Y F . The research about clustering algorithm of K-means[J]. Computer Technology and Development, 2011,21(2): 62-65.
|
[7] |
闫玮 . 基于多种层次聚类的算法研究[D]. 西安:西安电子科技大学, 2019.
|
|
YAN W . Algorithms research based on multiple hierarchical clustering[D]. Xi’an:Xidian University, 2019.
|
[8] |
ESTER M , KRIEGEL H P , XU X . A density-based algorithm for discovering clusters adensity-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 1996.
|
[9] |
谢娟英, 丁丽娟 . 完全自适应的谱聚类算法[J]. 电子学报, 2019,47(5): 1000-1008.
|
|
XIE J Y , DING L J . The true self-adaptive spectral clustering algorithms[J]. Acta Electronica Sinica, 2019,47(5): 1000-1008.
|
[10] |
孙鹏, 韩承德, 曾涛 . S-DBSCAN:一种基于DBSCAN发现高密度簇的算法[J]. 高技术通讯, 2012,22(6): 589-595.
|
|
SUN P , HAN C D , ZENG T . S-DBSCAN:an algorithm for finding high density clusters based on DBSCAN[J]. Chinese High Technology Letters, 2012,22(6): 589-595.
|
[11] |
SHAH G H , . An improved DBSCAN,a density based clustering algorithm with parameter selection for high dimensional data sets[C]// Proceedings of Nirma University International Conference on Engineering. Piscataway:IEEE Press, 2013.
|
[12] |
冯振华 . 基于 DBSCAN 聚类算法的研究与应用[D]. 无锡:江南大学, 2016.
|
|
FENG Z H . Research and application of clustering algorithm based on DBSCAN[D]. Wuxi:Jiangnan University, 2016.
|
[13] |
SUNITA J , PATAG K . Algorithm to determine ε-distance parameter in density based clustering[J]. Expert Systems With Applications, 2014,(6): 2939-2946.
|
[14] |
冯万兴, 朱晔, 郭钧天 ,等. 基于改进的 DBSCAN 方法和多项式拟合的雷电短时预测[J]. 计算机工程与科学, 2014,36(10): 2028-2033.
|
|
FENG W X , ZHU Y , GUO J T ,et al. Lightning forecast based on the improved DBSCAN and polynomial fitting[J]. Computer Engineering and Science, 2014,36(10): 2028-2033.
|