[1] |
LANGHEINRICH M . Privacy in ubiquitous computing[J]. Ubiquitous Computing Fundamentals, 2009(3): 95-159.
|
[2] |
United Nation General Assembly. Universal declaration of human rights[EB]. 2020.
|
[3] |
BERTINO E , LIN D , JIANG W . A survey of quantification of privacy preserving data mining algorithms[M]// Privacy- preserving data mining. Berlin:Springer, 2008: 183-205.
|
[4] |
宋蕾, 马春光, 段广晗 . 机器学习安全及隐私保护研究进展[J]. 网络与信息安全学报, 2018,4(8): 1-11.
|
|
SONG L , MA C G , DUAN G H . Machine learning security and privacy:a survey[J]. Chinese Journal of Network and Information Security, 2018,4(8): 1-11.
|
[5] |
赵镇东, 常晓林, 王逸翔 . 机器学习中的隐私保护综述[J]. 信息安全学报, 2019,4(5): 1-13.
|
|
ZHAO Z D , CHANG X L , WANG Y X . A survey of privacy preserving in machine learning[J]. Journal of Cyber Security, 2019,4(5): 1-13.
|
[6] |
ROUANI B D , SAMRAGH M , JACIDI T ,et al. Safe machine learning and defeating adversarial attacks[J]. IEEE Security &Privacy, 2019,17(2): 31-38.
|
[7] |
AL-RUBAIE M , CHANG J M . Privacy-preserving machine learning:threats and solutions[J]. IEEE Security & Privacy, 2019,17(2): 49-58.
|
[8] |
刘俊旭, 孟小峰 . 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020,57(2): 346-362.
|
|
LIU J X , MENG X F . Survey on privacy-preserving machine learning[J]. Journal of Computer Research and Development, 2020,57(2): 346-362.
|
[9] |
SWEENEY L . K-anonymity:a model for protecting privacy[J]. International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems, 2002,10(5): 557-570.
|
[10] |
MACHANAVAJJHALA A , KIFER D , GEHRKE J ,et al. L-diversity:privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2007,1(1):3.
|
[11] |
LI N , LI T , VENKATASUBRAMANIAN S . T-closeness:privacy beyond k-anonymity and l-diversity[C]// Proceedings of 2007 IEEE 23rd International Conference on Data Engineering. Piscataway:IEEE Press, 2007: 106-115.
|
[12] |
DWORK C , MCSHERRY F , NIAIIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// Proceedings of Theory of Cryptography Conference. Berlin:Springer, 2006.
|
[13] |
DWORK C , SMITH A , STEINKE T ,et al. Exposed! a survey of attacks on private data[J]. Annual Review of Statistics and its Application, 2017: 61-84.
|
[14] |
XU C , REN J , ZHANG D ,et al. GANobfuscator:mitigating information leakage under GAN via differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2019,14(9): 2358-2371.
|
[15] |
PHAN N H , WANG Y , WU X ,et al. Differential privacy preservation for deep auto-encoders:an application of human behavior prediction[C]// Proceedings of Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2016.
|
[16] |
JAYARAMAN B , EVANS D . When relaxations go bad:“differentially-private” machine learning[J]. arXiv:1902.08874, 2019
|
[17] |
RIVEST R L , ADLEMAN L , DERTOUZOS M L . On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978,4(11): 169-180.
|
[18] |
LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. arXiv:1908.07873, 2019
|
[19] |
NASR M , SHOKRI R , HOUMANSADDR A . Comprehensive privacy analysis of deep learning:stand-alone and federated learning under passive and active white-box inference attacks[J]. arXiv:1812.00910, 2018
|
[20] |
YAO A C , . Protocols for secure computations[C]// Proceedings of 23rd Annual Symposium on Foundations of Computer Science. Piscataway:IEEE Press, 1982: 160-164.
|
[21] |
KESDOGAN D , EGNER J , BUSCHKES R . Stop-and-goMIXes providing probabilistic anonymity in an open system[C]// Proceedings of International Workshop on Information Hiding. Berlin:Springer, 1998: 83-98.
|
[22] |
SERIGANTOV A , DANEZIS G . Towards an information theoretic metric for anonymity[C]// Proceedings of International Workshop on Privacy Enhancing Technologies. Berlin:Springer, 2002: 41-53.
|
[23] |
DIAZ C , . Towards measuring anonymity[C]// Proceedings of International Workshop on Privacy Enhancing Technologies,Berlin:Springer, 2002.
|
[24] |
OLIVEIRA S R M , ZAIANE O R . Privacy preserving clustering by data transformation[J]. Journal of Information and Data Management, 2010,1(1): 37-37.
|
[25] |
DIAZ C , TRONCOSO C , DANEZIS G . Does additional information always reduce anonymity?[C]// Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society. New York:ACM Press, 2007: 72-75.
|
[26] |
AGRAWAL R , SRIKANT R . Privacy-preserving data mining[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2000: 439-450.
|
[27] |
BAYARDO R J , AGRAWAL R . Data privacy through optimal k-anonymization[C]// Proceedings of 21st International Conference on Data Engineering (ICDE’05). Piscataway:IEEE Press, 2005: 217-228.
|
[28] |
OLIVEIRA S R M , ZAIANE O R . Privacy preserving frequent itemset mining[C]// Proceedings of the IEEE International Conference on Privacy,Security and Data Mining-Volume 14.[S.l:s.n. ], 2002: 43-54.
|
[29] |
DENG Y , PANG J , WU P . Measuring anonymity with relative entropy[C]// Proceedings of International Workshop on Formal Aspects in Security and Trust. Berlin:Springer, 2006: 65-79.
|
[30] |
LIN Z , HEWETT M , ALTMAN R B . Using binning to maintain confidentiality of medical data[C]// Proceedings of the AMIA Symposium.[S.l.:s.n]. 2002:454.
|
[31] |
BONDI A B , . Characteristics of scalability and their impact on performance[C]// Proceedings of the 2nd International Workshop on Software and Performance.[S.l.:s.n]. 2000: 195-203.
|
[32] |
LU Y , HUANG X , DAI Y ,et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2019,16(6): 4177-4186.
|
[33] |
KANG J , XIONG Z , NIYATO D ,et al. Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020,27(2): 72-80.
|