[1] |
ZHENG L , YANG Y , HAUPTMANN A G ,et al. Person re-identification:past,present and future[J]. arXiv:1610.02984, 2012.
|
[2] |
王志宏, 杨震 . 人工智能技术研究及未来智能化信息服务体系的思考[J]. 电信科学, 2017,33(5): 1-11.
|
|
WANG Z H , YANG Z . Research on artificial intelligence technology and the future intelligent information service architecture[J]. Telecommunications Science, 2017,33(5): 1-11.
|
[3] |
杨锋, 许玉, 尹梦晓 ,等. 基于深度学习的行人重识别综述[J]. 计算机应用, 2020,40(5): 1243-1252.
|
|
YANG F , XU Y , YIN M X ,et al. Review on deep learning-based pedestrian re-identification[J]. Journal of Computer Applications, 2020,40(5): 1243-1252.
|
[4] |
罗浩 . 深度学习时代的行人重识别技术[J]. 人工智能, 2019(2): 40-49.
|
|
LUO H . Person re-identification technology in the era of deep learning[J]. Artificial Intelligence, 2019(2): 40-49.
|
[5] |
GOODFELLOW I , POUGETABADIE J , MIRZA M ,et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. New York:ACM Press, 2014: 2672-2680.
|
[6] |
贾川民, 赵政辉, 王苫社 . 基于神经网络的图像视频编码[J]. 电信科学, 2019,35(5): 32-42.
|
|
JIA C M , ZHAO Z H , WANG S S . Neural network based image and video coding technologies[J]. Telecommunications Science, 2019,35(5): 32-42.
|
[7] |
王万良, 李卓蓉 . 生成式对抗网络研究进展[J]. 通信学报, 2018,39(2): 135-148.
|
|
WANG W L , LI Z R . Advances in generative adversarial network[J]. Journal on Communications, 2018,39(2): 135-148.
|
[8] |
陈亮, 吴攀, 刘韵婷 ,等. 生成对抗网络GAN的发展与最新应用[J]. 电子测量与仪器学报, 2020,34(6): 70-78.
|
|
CHEN L , WU P , LIU Y T ,et al. Development and application of the latest generation against the network of GAN[J]. Journal of Electronic Measurement and Instrumentation, 2020,34(6): 70-78.
|
[9] |
PAN S J , TSANG I W , KWOK J T ,et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011,22(2): 199-210.
|
[10] |
CHEN B , LAM W , TSANG I W ,et al. Extracting discriminative concepts for domain adaptation in text mining[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2009: 179-188.
|
[11] |
NIGAM K , MCCALLUM A , MITCHELL T . Semi-supervised text classification using EM[M]// Semi-supervised learning. Cambridge: MIT Press, 2006: 33-38.
|
[12] |
DENG W , ZHENG L , YE Q ,et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[J]. arXiv:1711.07027, 2018.
|
[13] |
WEI L , ZHANG S , GAO W ,et al. Person transfer GAN to bridge domain gap for person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 79-88.
|
[14] |
WANG J , ZHU X , GONG S ,et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2275-2284.
|
[15] |
LI Y , YANG F , LIU Y ,et al. Adaptation and re-identification network:an unsupervised deep transfer learning approach to person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 172-178.
|
[16] |
SONG L , WANG C , ZHANG L ,et al. Unsupervised domain adaptive re-identification:theory and practice[J]. arXiv:1807.11334, 2018.
|
[17] |
MA L , JIA X , SUN Q ,et al. Pose guided person image generation[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 406-416.
|
[18] |
XIONG F , XIAO Y , CAO Z ,et al. Towards good practices on building effective CNN baseline model for person re-identification[J]. arXiv:1807.11042, 2018.
|