[1] |
HARSHVARDHAN G M , GOURISARIA M K , PANDEY M ,et al. A comprehensive survey and analysis of generative models in machine learning[J]. Computer Science Review, 2020(38): 100285.
|
[2] |
OUSSIDI A , ELHASSOUNY A . Deep generative models:survey[C]// Proceedings of 2018 International Conference on Intelligent Systems and Computer Vision (ISCV). Piscataway:IEEE Press, 2018: 1-8.
|
[3] |
SHAHAM T R , DEKEL T , MICHAELI T . SinGAN:learning a generative model from a single natural image[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 4569-4579.
|
[4] |
于海涛, 杨小汕, 徐常胜 . 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020,57(7): 1522-1530.
|
|
YU H T , YANG X S , XU C S . Antagonistic video generation method based on multimodal input[J]. Journal of Computer Research and Development, 2020,57(7): 1522-1530.
|
[5] |
ZHU J Y , PARK T , ISOLA P ,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2242-2251.
|
[6] |
YUAN W , NEUBIG G , LIU P . BARTScore:evaluating generated text as text generation[J]. Advances in Neural Information Processing Systems, 2021(34): 27263-27277.
|
[7] |
LIAO J W , SHI Y , GONG M ,et al. Generating human readable transcript for automatic speech recognition with pre-trained language model[C]// Proceedings of ICASSP 2021 - 2021 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2021: 7578-7582.
|
[8] |
陈华华, 陈哲 . 基于钉板分布稀疏变分自编码器的异常检测算法研究[J]. 电信科学, 2022,38(12): 65-77.
|
|
CHEN H H , CHEN Z . Research on anomaly detection algorithm based on sparse variational autoencoder using spike and slab prior[J]. Telecommunications Science, 2022,38(12): 65-77.
|
[9] |
JIAO P , GUO X , JING X ,et al. Temporal network embedding for link prediction via VAE joint attention mechanism[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,33(12): 7400-7413.
|
[10] |
HUANG D , ZHU X , LI R ,et al. Feature screening for network autoregression model[J]. Statistica Sinica, 2021(31): 1239.
|
[11] |
AGGARWAL A , MITTAL M , BATTINENI G . Generative adversarial network:an overview of theory and applications[J]. International Journal of Information Management Data Insights, 2021,1(1): 100004.
|
[12] |
宋珂慧, 张莹, 张江伟 ,等. 基于生成式对抗网络的结构化数据表生成模型[J]. 计算机研究与发展, 2019,56(9): 1832-1842.
|
|
SONG K H , ZHANG Y , ZHANG J W ,et al. A generative model for synthesizing structured datasets based on GAN[J]. Journal of Computer Research and Development, 2019,56(9): 1832-1842.
|
[13] |
MAO X D , LI Q , XIE H R ,et al. Least squares generative adversarial networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2813-2821.
|
[14] |
ARJOVSKY M , BOTTOU L . Towards principled methods for training generative adversarial networks[J]. Stat, 2017:1050.
|
[15] |
ADLER J , LUNZ S . Banach Wasserstein GAN[J]. Advances in Neural Information Processing Systems, 2018(31).
|
[16] |
GULRAJANI I , AHMED F , ARJOVSKY M ,et al. Improved training of wasserstein GANs[J]. Advances in Neural Information Processing Systems, 2017(30).
|
[17] |
WU J Q , HUANG Z W , THOMA J ,et al. Wasserstein divergence for GANs[C]// Proceedings of European Conference on Computer Vision. Cham:Springer, 2018: 673-688.
|
[18] |
RADFORD A , METZ L , CHINTALA S . Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint, 2015,arXiv:1511.06434.
|
[19] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90.
|
[20] |
MIRZA M , OSINDERO S . Conditional generative adversarial nets[J]. Computer Science, 2014: 2672-2680.
|
[21] |
CHEN X , DUAN Y , HOUTHOOFT R ,et al. InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM Press, 2016: 2180-2188.
|
[22] |
ODENA A , OLAH C , SHLENS J . Conditional image synthesis with auxiliary classifier GANs[C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. New York:ACM Press, 2017: 2642-2651.
|
[23] |
LUCIC M , TSCHANNEN M , RITTER M ,et al. High-fidelity image generation with fewer labels[J]. arXiv preprint, 2019,arXiv:1903.02271.
|
[24] |
LIU S , WANG T Z , BAU D ,et al. Diverse image generation via self-conditioned GANs[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE Press, 2020: 14286-14295.
|
[25] |
ZHANG X , CHENG Z , ZHANG X ,et al. Posterior promoted GAN with distribution discriminator for unsupervised image synthesis[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 6519-6528.
|
[26] |
KARRAS T , AILA , LAINE S ,et al. Progressive growing of GANs for improved quality,stability,and variation[J]. arXiv preprint, 2017,arXiv:1710.10196.
|
[27] |
SALIMANS T , GOODFELLOW I , ZAREMBA W ,et al. Improved techniques for training GANs[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM Press, 2016: 2234-2242.
|
[28] |
ODENA A , DUMOULIN V , OLAH C . Deconvolution and checkerboard artifacts[J]. Distill, 2016,1(10): e3.
|
[29] |
GLOROT X , BENGIO Y . Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.JMLR Workshop and Conference Proceedings. 2010: 249-256.
|
[30] |
HUGHES D P , SALATHE M . An open access repository of images on plant health to enable the development of mobile disease diagnostics[J]. Computer Science, 2015,arXiv:1511.08060.
|
[31] |
CHOI Y , UH Y , YOO J ,et al. StarGAN v2:diverse image synthesis for multiple domains[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 8188-8197.
|
[32] |
CHONG M J , FORSYTH D . Effectively unbiased FID and inception score and where to find them[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 6069-6078.
|
[33] |
HEUSEL M , RAMSAUER H , UNTERTHINER T ,et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 6629-6640.
|