电信科学 ›› 2022, Vol. 38 ›› Issue (3): 113-132.doi: 10.11959/j.issn.1000-0801.2022022
所属专题: 边缘计算
邹璐珊1,2, 黄晓雯1,3, 杨敬民1,4, 郑艺峰1,2, 张光林3, 张文杰1,2
修回日期:
2022-01-26
出版日期:
2022-03-20
发布日期:
2022-03-01
作者简介:
邹璐珊(1998- ),女,闽南师范大学计算机学院硕士生,主要研究方向为移动边缘计算基金资助:
Lushan ZOU1,2, Xiaowen HUANG1,3, Jingmin YANG1,4, Yifeng ZHENG1,2, Guanglin ZHANG3, Wenjie ZHANG1,2
Revised:
2022-01-26
Online:
2022-03-20
Published:
2022-03-01
Supported by:
摘要:
移动边缘计算(mobile edge computing,MEC)通过将计算任务卸载至边缘服务器,降低网络负荷,减少传输时延,提升用户服务体验。因此,MEC受到了广泛关注,并成为5G的关键技术。资源分配作为MEC的主要问题,在提升能量效率、缩短任务时延和节约成本方面具有非常重大的研究意义。首先,介绍了MEC的基本概念、参考架构和技术优势;然后,从技术层面和经济层面归纳总结了MEC中最新的资源分配和定价策略;最后,讨论了MEC资源分配和定价策略中可能存在的问题与挑战,并提出了一些可行的解决方案,为后续研究发展提供参考。
中图分类号:
邹璐珊, 黄晓雯, 杨敬民, 郑艺峰, 张光林, 张文杰. 移动边缘计算中资源分配和定价方法综述[J]. 电信科学, 2022, 38(3): 113-132.
Lushan ZOU, Xiaowen HUANG, Jingmin YANG, Yifeng ZHENG, Guanglin ZHANG, Wenjie ZHANG. Review on resources allocation and pricing methods in mobile edge computing[J]. Telecommunications Science, 2022, 38(3): 113-132.
表1
MEC中技术层面资源分配方法归类总结"
MEC场景 | 优化目标 | 参考文献 | 卸载方式 | 计算卸载方案 |
单用户 | 能耗 | 文献[ | 完全卸载 | 基于马尔可夫决策过程的能耗优化模型 |
文献[ | 完全卸载 | 最优码本速率设计和计算任务分配方案 | ||
时延 | 文献[ | 部分卸载 | 马尔可夫决策 | |
文献[ | 部分卸载 | 不等式分析法 | ||
成本 | 文献[ | 部分卸载 | 基于李雅普诺夫优化的动态计算卸载算法(LODCO) | |
QoE | 文献[ | 完全卸载 | 基于自调整参数化技术的贪婪算法 | |
多用户 | 能耗 | 文献[ | 部分卸载 | 基于李雅普诺夫优化技术在线卸载算法设计了任务卸载分配策略 |
时延 | 文献[ | 部分卸载 | 云计算和边缘计算结合(CENAM)模型 | |
文献[ | 部分卸载 | 遗传算法和基于分割时间槽的资源分配算法 | ||
时延和能耗 | 文献[ | 部分卸载 | 运用DDPG和ECOO算法的新型学习算法 | |
文献[ | 部分卸载 | 线性规划与交替优化技术结合的迭代算法 | ||
QoE | 文献[ | 部分卸载 | 多CDN视频分发和本地存储的网络代理方案 | |
多服务器 | 时延 | 文献[ | 完全卸载 | 基于网联车多跳传输的移动边缘计算卸载策略 |
文献[ | 完全卸载 | 最佳停止理论方法 | ||
文献[ | 完全卸载 | 改进min-min算法(TPMM) | ||
时延和能耗 | 文献[ | 部分卸载 | 基于深度强化学习的CAP辅助计算 | |
QoE | 文献[ | 部分卸载 | 基于块坐标下降算法的迭代算法 | |
文献[ | 完全卸载 | 机器学习模型 | ||
能耗 | 文献[ | 完全卸载 | 遗传学与生物地理学集成的算法 |
表2
基于经济分析的资源分配和定价方法比较及使用场景与局限性"
经济和定价模型 | 定价策略 | 参考文献 | 具体方案 | 适用场景和局限性 |
基于市场的定价 | 基于成本的定价 | 文献[ | 低梯度迭代算法 | 适用于比较简单的市场结构,缺乏 |
文献[ | 低复杂度梯度算法 | 考虑供应商策略、卖家价格感知和 | ||
文献[ | 动态递推 | 支付意愿等市场外部因素 | ||
文献[ | SARASA算法 | |||
歧视定价 | 文献[ | 低梯度迭代算法 | 适用于大部分市场结构,但是缺乏 | |
文献[ | 低复杂度梯度算法 | 公平性 | ||
文献[ | 动态递推 | |||
文献[ | SARASA算法 | |||
利润最大 | 文献[ | 引入几种分布式算法得出市场需求曲线 | 适用于大部分市场结构,但忽略市场竞争问题 | |
拉姆齐定 | 文献[ | 任务卸载效用函数 | 适用于大部分市场结构,但未考虑 | |
文献[ | AP诱导自利用户选择正确的优先级别 | 弹性需求市场 | ||
基于博弈理论的定价 | 非合作博 | 文献[ | 基于有限改进性质的分布式博弈方法 | 适用于每个参与者都是自主决策与 |
文献[ | 利用潜在博弈模型解决分布式任务卸载的问题 | 其他参与者无关的场景,但是参与 | ||
文献[ | 基于博弈的云资源和计算资源联合分配方案 | 者同时公布自身定价策略在实际中 | ||
文献[ | 两阶段任务迁移算法 | 很难成立 | ||
文献[ | 拉格朗日乘子法以及迭代法 | |||
主从博弈 | 文献[ | 迭代算法 | 适用于某一方具有优先权可抢占先 | |
文献[ | 分布式迭代算法 | 机的场景,但是要求参与者完全理性 | ||
文献[ | ODCA算法 | |||
演化博弈 | 文献[ | 迭代算法 | 适用于参与者具有各自的计算卸载 | |
文献[ | 基于强化学习的进化博弈卸载策略(EGT-QL) | 任务并且不了解其他参与者的卸载 | ||
文献[ | 基于演化博弈论的分散迭代算法 | 策略 | ||
文献[ | 人口进化集中算法 | |||
文献[ | 基于概率演化博弈论框架的动态卸载策略 | |||
文献[ | 均值场进化方法 | |||
基于拍卖理论的定价 | 双重拍卖 | 文献[ | McAfee拍卖算法 | 适用于拍卖双方如实提供定价及要 |
文献[ | 盈亏平衡双重拍卖(BDA)和动态定价双重拍卖(DPDA) | 价的场景 | ||
文献[ | 基于时延保证的资源双重拍卖算法(LGRDA) | |||
文献[ | 经验加权吸引力(EWA)算法 | |||
最优拍卖 | 文献[ | 运用深度神经网络控制终端设备参与拍卖活动 | 适用于买家都有拍卖意愿并且买家 | |
文献[ | 基于深度学习的最佳拍卖方案 | 会依据真实的价值估价进行出价 | ||
文献[ | 基于最优拍卖的任务缓存机制 | |||
组合拍卖 | 文献[ | 多轮顺序组合拍卖机制 | 适用于分配多种商品的场景,但是 | |
拍卖最终中标者的确定是一大难点 |
[50] | LI G S , ZHANG Y , WANG M L ,et al. Resource management framework based on the stackelberg game in vehicular edge computing[J]. Complexity, 2020:8936064. |
[51] | CHEN Y F , LI Z Y , YANG B ,et al. A Stackelberg game approach to multiple resources allocation and pricing in mobile edge computing[J]. Future Generation Computer Systems, 2020,108: 273-287. |
[52] | HUANG X W , ZHANG W J , YANG J M ,et al. Market-based dynamic resource allocation in Mobile Edge Computing systems with multi-server and multi-user[J]. Computer Communications, 2021,165: 43-52. |
[53] | CUI Y Y , ZHANG D G , ZHANG T ,et al. Novel method of mobile edge computation offloading based on evolutionary game strategy for IoT devices[J]. AEU - International Journal of Electronics and Communications, 2020,118: 153134. |
[54] | DONG C W , WEN W S . Joint optimization for task offloading in edge computing:an evolutionary game approach[J]. Sensors (Basel,Switzerland), 2019,19(3): 740. |
[55] | DONG Y F , PENG Y F , GUO X P ,et al. Offloading decision algorithm using evolutionary game for mobile edge computing[C]// Proceedings of 2019 IEEE 2nd International Conference on Information Communication and Signal Processing. Piscataway:IEEE Press, 2019: 210-214. |
[1] | IMT-2020(5G)推进组. 5G愿景与需求白皮书V1.0[R]. 2014. |
IMT-2020. 5G Vision and demand white paper V1.0[R]. 2014. | |
[2] | LIN J , YU W , ZHANG N ,et al. A survey on Internet of things:architecture,enabling technologies,security and privacy,and appli cations[J]. IEEE Internet of Things Journal, 2017,4(5): 1125-1142. |
[3] | MACH P , BECVAR Z . Mobile edge computing:a survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1628-1656. |
[4] | 张建敏, 谢伟良, 杨峰义 ,等. 移动边缘计算技术及其本地分流方案[J]. 电信科学, 2016,32(7): 132-139. |
ZHANG J M , XIE W L , YANG F Y ,et al. Mobile edge computing and application in traffic offloading[J]. Telecommunications Science, 2016,32(7): 132-139. | |
[5] | 李子姝, 谢人超, 孙礼 ,等. 移动边缘计算综述[J]. 电信科学, 2018,34(1): 87-101. |
LI Z S , XIE R C , SUN L ,et al. A survey of mobile edge computing[J]. Telecommunications Science, 2018,34(1): 87-101. | |
[56] | LEI Y , ZHENG W B , MA Y ,et al. A novel probabilistic-performance-aware and evolutionary game-theoretic approach to task offloading in the hybrid cloud-edge environment[C]// Collaborative Computing:Networking,Applications and Worksharing, 2021: 255-270. |
[57] | GAO H , LI W C , BANEZ R A ,et al. Mean field evolutionary dynamics in ultra dense mobile edge computing systems[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[6] | MAO Y Y , YOU C S , ZHANG J ,et al. A survey on mobile edge computing:the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017,19(4): 2322-2358. |
[7] | 施巍松, 张星洲, 王一帆 ,等. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019,56(1): 69-89. |
SHI W S , ZHANG X Z , WANG Y F ,et al. Edge computing:state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019,56(1): 69-89. | |
[58] | 林艳, 闫帅, 张一晋 ,等. 基于交通流量预测的车联网双边拍卖边缘计算迁移方案[J]. 通信学报, 2020,41(12): 205-214. |
LIN Y , YAN S , ZHANG Y J ,et al. Flow-of-traffic prediction program based mobile edge computing for Internet of vehicles using double auction[J]. Journal on Communications, 2020,41(12): 205-214. | |
[8] | ISLAM A , DEBNATH A , GHOSE M ,et al. A survey on task offloading in multi-access edge computing[J]. Journal of Systems Architecture, 2021,118:102225. |
[9] | KE H C , WANG J , DENG L Y ,et al. Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(7): 7916-7929. |
[59] | SUN W , LIU J J , YUE Y L ,et al. Double auction-based resource allocation for mobile edge computing in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2018,14(10): 4692-4701. |
[60] | LIN J , HUANG L , ZHANG H L ,et al. A novel Latency-Guaranteed based Resource Double Auction for market-oriented edge computing[J]. Computer Networks, 2021,189: 107873. |
[10] | 夏士超, 姚枝秀, 鲜永菊 ,等. 移动边缘计算中分布式异构任务卸载算法[J]. 电子与信息学报, 2020,42(12): 2891-2898. |
XIA S C , YAO Z X , XIAN Y J ,et al. A distributed heterogeneous task offloading methodology for mobile edge computing[J]. Journal of Electronics & Information Technology, 2020,42(12): 2891-2898. | |
[61] | LI Q Y , YAO H P , MAI T L ,et al. Reinforcement-learning- and belief-learning-based double auction mechanism for edge computing resource allocation[J]. IEEE Internet of Things Journal, 2020,7(7): 5976-5985. |
[62] | MASHHADI F , MONROY S A S , BOZORGCHENANI A ,et al. Optimal auction for delay and energy constrained task offloading in mobile edge computing[J]. Computer Networks, 2020,183: 107527. |
[11] | PATEL M , NAUGHTON B ,et al. Mobile-edge computing-introductory technical white paper[R]. European Telecommunications Standards Institute, 2015. |
[12] | 李邱苹, 赵军辉, 贡毅 . 移动边缘计算中的计算卸载和资源管理方案[J]. 电信科学, 2019,35(3): 36-46. |
[63] | LUONG N C , XIONG Z H , WANG P ,et al. Optimal auction for edge computing resource management in mobile blockchain networks:a deep learning approach[C]// Proceedings of 2018 IEEE International Conference on Communications. Piscataway:IEEE Press, 2018: 1-6. |
[64] | CAO X Y , ZHANG J S , POOR H V . Mobile edge caching:an optimal auction approach[J]. ArXiv, 2017: 1-14. |
[65] | PARKES D C . Iterative combinatorial auctions[M]. Cambridge: MIT press, 2005: 41-78. |
[66] | 张海波, 栾秋季, 朱江 ,等. 基于移动边缘计算的 V2X 任务卸载方案[J]. 电子与信息学报, 2018,40(11): 2736-2743. |
ZHANG H B , LUAN Q J , ZHU J ,et al. V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics & Information Technology, 2018,40(11): 2736-2743. | |
[67] | 项弘禹, 肖扬文, 张贤 ,等. 5G边缘计算和网络切片技术[J]. 电信科学, 2017,33(6): 54-63. |
[12] | LI Q P , ZHAO J H , GONG Y . Computation offloading and resource management scheme in mobile edge computing[J]. Telecommunications Science, 2019,35(3): 36-46. |
[13] | LIU L , CHEN C , PEI Q Q ,et al. Vehicular edge computing and networking:a survey[J]. Mobile Networks and Applications, 2021,26(3): 1145-1168. |
[14] | 郭延超, 高岭, 王海 ,等. 移动边缘计算中基于内容动态刷新的能耗优化[J]. 计算机研究与发展, 2018,55(3): 563-571. |
GUO Y C , GAO L , WANG H ,et al. Power optimization based on dynamic content refresh in mobile edge computing[J]. Journal of Computer Research and Development, 2018,55(3): 563-571. | |
[15] | MAO Y Y , ZHANG J , LETAIEF K B . Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016,34(12): 3590-3605. |
[16] | LIU J , MAO Y Y , ZHANG J ,et al. Delay-optimal computation task scheduling for mobile-edge computing systems[C]// 2016 IEEE International Symposium on Information Theory (ISIT), 2016: 1451-1455. |
[17] | MELENDEZ S , MCGARRY M P . Computation offloading decisions for reducing completion time[C]// Proceedings of 2017 14th IEEE Annual Consumer Communications & Networking Conference. Piscataway:IEEE Press, 2017: 160-164. |
[18] | 任品毅, 许茜 . 基于移动边缘计算的时延能耗最小化安全传输[J]. 通信学报, 2020,41(11): 52-63. |
REN P Y , XU Q . Delay and energy minimization for MEC-based secure communication[J]. Journal on Communications, 2020,41(11): 52-63. | |
[19] | YANG S R , TSENG Y J , HUANG C C ,et al. Multi-access edge computing enhanced video streaming:proof-of-concept implementation and prediction/QoE models[J]. IEEE Transactions on Vehicular Technology, 2019,68(2): 1888-1902. |
[20] | 马惠荣, 陈旭, 周知 ,等. 绿色能源驱动的移动边缘计算动态任务卸载[J]. 计算机研究与发展, 2020,57(9): 1823-1838. |
MA H R , CHEN X , ZHOU Z ,et al. Dynamic task offloading for mobile edge computing with green energy[J]. Journal of Computer Research and Development, 2020,57(9): 1823-1838. | |
[21] | LI G S , WANG J P , WU J H ,et al. Data processing delay optimization in mobile edge computing[J]. Wireless Communications and Mobile Computing,2018, 2018:6897523. |
[22] | ZHANG W X , DU Y W . Deep reinforcement learning-based optimization of lightweight task offloading for multi-user mobile computing[J]. Journal of Measurement Science and Instrumentation, 2020: 1-14. |
[23] | 李振江, 张幸林 . 减少核心网拥塞的边缘计算资源分配和卸载决策[J]. 计算机科学, 2021,48(3): 281-288. |
LI Z J , ZHANG X L . Resource allocation and offloading decision of edge computing for reducing core network congestion[J]. Computer Science, 2021,48(3): 281-288. | |
[24] | VIOLA R , MARTIN A , ZORRILLA M ,et al. MEC proxy for efficient cache and reliable multi-CDN video distribution[C]// Proceedings of 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Piscataway:IEEE Press, 2018: 1-7. |
[25] | FAN W H , HAN J T , YAO L ,et al. Latency-energy optimization for joint Wi-Fi and cellular offloading in mobile edge computing networks[J]. Computer Networks, 2020,181:107570. |
[26] | 邸剑, 薛林, 蔡震 . 基于网联车多跳传输的移动边缘计算卸载[J]. 计算机应用研究, 2021,38(4): 1145-1148,1157. |
DI J , XUE L , CAI Z . Mobile edge computing offloading based on multi-hop transmission of connected vehicles[J]. Application Research of Computers, 2021,38(4): 1145-1148,1157. | |
[27] | ALGHAMDI I , ANAGNOSTOPOULOS C , PEZAROS D P . Data quality-aware task offloading in mobile edge computing:an optimal stopping theory approach[J]. Future Generation Computer Systems, 2021(117): 462-479. |
[28] | 董思岐, 李海龙, 屈毓锛 ,等. 面向优先级用户的移动边缘计算任务调度策略[J]. 计算机应用研究, 2020,37(9): 2701-2705. |
DONG S Q , LI H L , QU Y B ,et al. Task scheduling policy for mobile edge computing with user priority[J]. Application Research of Computers, 2020,37(9): 2701-2705. | |
[29] | TAO L W , ZHAO M X , HUI W Y ,et al. Collaborative offloading for UAV-enabled time-sensitive MEC networks[J]. EURASIP Journal on Wireless Communications and Networking, 2021,2021(1): 1-17. |
[30] | MEHRABI A , SIEKKINEN M , YL?-J??SKI A , . Energy-aware QoE and backhaul traffic optimization in green edge adaptive mobile video streaming[J]. IEEE Transactions on Green Communications and Networking, 2019,3(3): 828-839. |
[31] | ZHAO R , WANG X J , XIA J J ,et al. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things[J]. Physical Communication, 2020(43): 101184-839. |
[32] | WEI Z C , PAN J , LYU Z W ,et al. An offloading strategy with soft time windows in mobile edge computing[J]. Computer Communications, 2020(164): 42-49. |
[33] | LUONG N C , WANG P , NIYATO D ,et al. Resource management in cloud networking using economic analysis and pricing models:a survey[J]. IEEE Communications Surveys & Tutorials, 2017,19(2): 954-1001. |
[34] | LI L H , LV T J , HUANG P M ,et al. Cost optimization of partial computation offloading and pricing in vehicular networks[J]. Journal of Signal Processing Systems, 2020,92(12): 1421-1435. |
[35] | 吴雨芯, 蔡婷, 张大斌 . 移动边缘计算中基于 Stackelberg博弈的算力交易与定价[J]. 计算机应用, 2020,40(9): 2683-2690. |
WU Y X , CAI T , ZHANG D B . Computing power trading and pricing in mobile edge computing based on Stackelberg game[J]. Journal of Computer Applications, 2020,40(9): 2683-2690. | |
[36] | XIONG Z H , FENG S H , NIYATO D ,et al. Optimal pricing-based edge computing resource management in mobile blockchain[C]// Proceedings of 2018 IEEE International Conference on Communications. Piscataway:IEEE Press, 2018: 1-6. |
[37] | LIU M Y , LIU Y . Price-based distributed offloading for mobile-edge computing with computation capacity constraints[J]. IEEE Wireless Communications Letters, 2018,7(3): 420-423. |
[38] | 刘荆欣, 王妍, 韩笑 ,等. 基于 Stackelberg 博弈的边缘云资源定价机制研究[J]. 计算机科学与探索, 2020: 1-12. |
LIU J X , WANG Y , HAN X ,et al. Research on edge cloud resource pricing mechanism based on Stackelberg game[J]. Jour nal of Frontiers of Computer Science and Technology, 2020: 1-12. | |
[39] | NGUYEN D T , LE L B , BHARGAVA V . Price-based resource allocation for edge computing:a market equilibrium approach[J]. IEEE Transactions on Cloud Computing, 2021,9(1): 302-317. |
[40] | LI L X , QUEK T Q S , REN J ,et al. An incentive-aware job offloading control framework for multi-access edge computing[J]. IEEE Transactions on Mobile Computing, 2021,20(1): 63-75. |
[41] | LI L X , SIEW M , QUEK T Q S ,et al. Learning-based priority pricing for job offloading in mobile edge computing[J]. ArXiv Preprint ArXiv, 2019: 1-25. |
[42] | ALSKAIF T , GUERRERO ZAPATA M , BELLALTA B . Game theory for energy efficiency in Wireless Sensor Networks:latest trends[J]. Journal of Network and Computer Applications, 2015(54): 33-61. |
[43] | 张艮山, 刘旭宁 . 资源受限移动边缘计算任务拆分卸载调度决策[J]. 计算机应用与软件, 2019,36(10): 268-273,278. |
ZHANG G S , LIU X N . Tasks split and offloading scheduling decision in mobile edge computing with limited resources[J]. Computer Applications and Software, 2019,36(10): 268-273,278. | |
[44] | LI Y H , JIANG C S . Distributed task offloading strategy to low load base stations in mobile edge computing environment[J]. Computer Communications, 2020,164: 240-248. |
[45] | ZHANG J , XIA W W , HUANG B N ,et al. Joint resource allocation scheme based on evolutionary game for mobile edge computing[J]. Journal of Southeast University (English Edition), 2018,34(4): 415-422. |
[46] | 王艺洁, 凡佳飞, 王陈宇 . 云边环境下基于博弈论的两阶段任务迁移策略[J]. 计算机应用, 2021,41(5): 1392-1398. |
WANG Y J , FAN J F , WANG C Y . Two-stage task offloading strategy based on game theory in cloud-edge environment[J]. Journal of Computer Applications, 2021,41(5): 1392-1398. | |
[47] | 龙隆, 刘子辰, 石晶林 ,等. 移动边缘计算中计算卸载与资源分配的联合优化策略[J]. 高技术通讯, 2020,30(8): 765-773. |
LONG L , LIU Z C , SHI J L ,et al. Joint optimization strategy of computation offloading and resource allocation in mobile edge computing[J]. Chinese High Technology Letters, 2020,30(8): 765-773. | |
[48] | LEITMANN G . Multicriteria Decision Making and Differential Games[M]. Boston,MA: Springer US, 1976. |
[67] | XIANG H Y , XIAO Y W , ZHANG X ,et al. Edge computing and network slicing technology in 5G[J]. Telecommunications Science, 2017,33(6): 54-63. |
[49] | JIE Y M , TANG X Y , CHOO K K R ,et al. Online task scheduling for edge computing based on repeated Stackelberg game[J]. Journal of Parallel and Distributed Computing, 2018,122: 159-172. |
[1] | 蒋瑞红, 冯一哲, 孙耀华, 郑海娜. 面向低轨卫星网络的组网关键技术综述[J]. 电信科学, 2023, 39(2): 37-47. |
[2] | 康宇, 刘雅琼, 赵彤雨, 寿国础. AI算法在车联网通信与计算中的应用综述[J]. 电信科学, 2023, 39(1): 1-19. |
[3] | 汪晗, 刁磊, 王梦玲, 荣欣, 李佳珉, 尤肖虎. 工业物联网中URLLC的关键问题分析[J]. 电信科学, 2022, 38(Z1): 77-92. |
[4] | 贺智敏, 林育哲, 程宇杰, 闫实. 基于无线感知辅助的车联网下行无线资源分配方法[J]. 电信科学, 2022, 38(9): 60-70. |
[5] | 张天魁, 徐瑜, 刘元玮, 杨鼎成, 任元红. 无人机辅助MEC系统:架构、关键技术与未来挑战[J]. 电信科学, 2022, 38(8): 3-16. |
[6] | 邓平科, 张同须, 施南翔, 张童, 邵天竺, 郑韶雯. 星算网络——空天地一体化算力融合网络新发展[J]. 电信科学, 2022, 38(6): 71-81. |
[7] | 绳韵, 许晨, 郑光远. 基于NOMA的超密集MEC网络任务卸载和资源分配方案[J]. 电信科学, 2022, 38(2): 35-46. |
[8] | 丁铖, 陈锦荣, 曹小冬, 王翊. 基于服务质量的层次化结构资源分配算法[J]. 电信科学, 2022, 38(1): 102-111. |
[9] | 赵军辉, 张丹阳, 贺林. 智慧城轨交通通信技术的分析与展望[J]. 电信科学, 2021, 37(4): 1-13. |
[10] | 余云河, 孙君. 机器类通信中集中式与分布式Q学习的资源分配算法研究[J]. 电信科学, 2021, 37(11): 41-50. |
[11] | 马小婷,赵军辉,孙笑科,贡毅. 基于MEC的车联网协作组网关键技术[J]. 电信科学, 2020, 36(6): 28-37. |
[12] | 欧阳晔,杨爱东,孟凡语. 一种博弈论辅助的机器学习算法检测用户流失行为[J]. 电信科学, 2020, 36(6): 79-89. |
[13] | 杨荣悦,张鹏洲,宋卿. 基于5G技术的智能车联网研究与展望[J]. 电信科学, 2020, 36(5): 106-114. |
[14] | 彭新玉,周扬,董振江. 基于车联网远程驾驶的虚拟资源智能协同管理技术[J]. 电信科学, 2020, 36(4): 61-68. |
[15] | 吴柳青,朱晓荣. 基于边-端协同的任务卸载资源分配联合优化算法[J]. 电信科学, 2020, 36(3): 42-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|