电信科学 ›› 2023, Vol. 39 ›› Issue (5): 116-128.doi: 10.11959/j.issn.1000-0801.2023112

• 研究与开发 • 上一篇    下一篇

基于并行可分离卷积和标签平滑正则化的脑电情感识别

张永1,2, 刘纪奎1, 柯文龙1   

  1. 1 湖州师范学院信息工程学院,浙江 湖州 313000
    2 辽宁师范大学计算机与信息技术学院,辽宁 大连 116081
  • 修回日期:2023-05-12 出版日期:2023-05-20 发布日期:2023-05-01
  • 作者简介:张永(1975– ),男,博士,湖州师范学院教授、博士生导师,辽宁师范大学计算机与信息技术学院教授,主要研究方向为数据挖掘、智能计算、情感计算
    刘纪奎(2000– ),男,湖州师范学院在读,主要研究方向为数据挖掘、情感计算
    柯文龙(1989– ),男,博士,湖州师范学院讲师、硕士生导师,主要研究方向为机器学习、软件定义网络
  • 基金资助:
    国家自然科学基金资助项目(61772252);辽宁省教育厅科学研究经费项目(LJKZ0965);湖州科技计划项目(2022GZ08)

EEG emotion recognition based on parallel separable convolution and label smoothing regularization

Yong ZHANG1,2, Jikui LIU1, Wenlong KE1   

  1. 1 School of Information Engineering, Huzhou University, Huzhou 313000, China
    2 School of Computer Science and Information Technology, Liaoning Normal University, Dalian 116081, China
  • Revised:2023-05-12 Online:2023-05-20 Published:2023-05-01
  • Supported by:
    The National Natural Science Foundation of China(61772252);The Scientific Research Foundation of the Education Department of Liaoning Province(LJKZ0965);The Huzhou Science and Technology Plan Project(2022GZ08)

摘要:

近年来,基于深度学习和脑电图(EEG)的情感识别方法取得了较好的效果。然而,现有方法依然存在脑电情感特征提取不够全面、受人工错误标注的情感标签影响较大等问题。对此,提出了并行可分离卷积和标签平滑正则化(PSC-LSR)网络模型。首先,通过注意力机制,赋予EEG重要时间点和重要通道更大的权重,得到 EEG 的浅层情感特征;其次,采用并行可分离卷积模块全面提取 EEG 情感信息,得到深层情感特征;最后,在优化模型参数时采用了情感标签平滑正则化方法,使模型对错误标签有更大的容错概率,增强了网络模型的泛化性和鲁棒性,提高了脑电情感识别的准确率。提出的方法在两个数据集进行了验证,其中,在DEAP数据集中,唤醒和效价两个维度的平均准确率分别达到了99.23%和99.13%;在Dreamer数据集中,唤醒和效价两个维度的平均准确率分别达到了97.33%和97.25%。

关键词: 脑电信号, 情感识别, 标签平滑正则化, 注意力机制

Abstract:

In recent years, emotion recognition methods based on deep learning and electroencephalogram (EEG) have achieved good results.However, existing methods still have issues such as incomplete extraction of emotional features from EEG and significant impact from artificially mislabeled emotional labels.A parallel separable convolution and label smoothing regularization (PSC-LSR) network model was proposed.Firstly, through the attention mechanism, EEG important time points and important channels were given greater weight to obtain shallow emotional features of EEG.Secondly, a parallel separable convolution module was used to comprehensively extract EEG emotional information and obtain deep emotional features.Finally, the emotion label smoothing regularization method was used to optimize the model parameters, which increased model’s fault tolerance probability for incorrect labels, enhanced the generalization and robustness of the network model, and improved accuracy of EEG emotion recognition.The proposed method has been validated in two datasets, in which the average accuracy rates of arousal and valence dimensions in the DEAP dataset reaches 99.23% and 99.13%, respectively.In the Dreamer dataset, the average accuracy rates for both arousal and valence dimensions reaches 97.33% and 97.25%.

Key words: EEG, emotional recognition, label smoothing regularization, attention mechanism

中图分类号: 

No Suggested Reading articles found!