[1] |
GAO Z K , LI Y L , YANG Y X ,et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020(380): 225-235.
|
[2] |
CHEN G J , ZHANG X Y , SUN Y ,et al. Emotion feature analysis and recognition based on reconstructed EEG sources[J]. IEEE Access, 2020(8): 11907-11916.
|
[3] |
WANG Z M , ZHOU X X , WANG W L ,et al. Emotion recognition using multimodal deep learning in multiple psychophysiological signals and video[J]. International Journal of Machine Learning and Cybernetics, 2020,11(4): 923-934.
|
[4] |
KESSOUS L , CASTELLANO G , CARIDAKIS G . Multimodal emotion recognition in speech-based interaction using facial expression,body gesture and acoustic analysis[J]. Journal on Multimodal User Interfaces, 2010,3(1): 33-48.
|
[5] |
ANDERSON K , MCOWAN P W . A real-time automated system for the recognition of human facial expressions[J]. IEEE Transactions on Systems,Man,and Cybernetics Part B,Cybernetics:a Publication of the IEEE Systems,Man,and Cybernetics Society, 2006,36(1): 96-105.
|
[6] |
刘晓旻, 谭华春, 章毓晋 . 人脸表情识别研究的新进展[J]. 中国图象图形学报, 2006,11(10): 1359-1368.
|
|
LIU X M , TAN H C , ZHANG Y J . New research advances in facial expression recognition[J]. Journal of Image and Graphics, 2006,11(10): 1359-1368.
|
[7] |
刘玉娟, 方富熹 . 情绪的语音交流[J]. 中国行为医学科学, 2007,16(4): 374-376.
|
|
LIU J Y , FANG F X . Voice communication of emotions[J]. Chinese Journal of Behavioral Medical and Brain Science, 2007,16(4): 374-376.
|
[8] |
ANG J , DHILLON R , KRUPSKI A ,et al. Prosody-based automatic detection of annoyance and frustration in human-computer dialog[C]// Proceedings of 7th International Conference on Spoken Language Processing (ICSLP 2002).[S.l.:s.n.], 2002: 2037-2040.
|
[9] |
EKMAN P . An argument for basic emotions[J]. Cognition and Emotion, 1992,6(3/4): 169-200.
|
[10] |
PLUTCHIK R . The nature of emotions:human emotions have deep evolutionary roots,a fact that may explain their complexity and provide tools for clinical practice[J]. American Scientist, 2001,89(4): 344-350.
|
[11] |
RUSSELL J A . A circumplex model of affect[J]. Journal of Personality and Social Psychology, 1980,39(6): 1161-1178.
|
[12] |
MEHRABIAN A . Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression[J]. Journal of Psychopathology and Behavioral Assessment, 1997,19(4): 331-357.
|
[13] |
SHU L , XIE J Y , YANG M Y ,et al. A review of emotion recognition using physiological signals[J]. Sensors (Basel,Switzerland), 2018,18(7): 2074.
|
[14] |
DAI Y X , WANG X , ZHANG P B ,et al. Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition[J]. Multimedia Tools and Applications, 2018,77(17): 21967-21994.
|
[15] |
YU X Y , CHUM P , SIM K B . Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system[J]. Optik, 2014,125(3): 1498-1502.
|
[16] |
FAYEK H M , LECH M , CAVEDON L . Modeling subjectiveness in emotion recognition with deep neural networks:ensembles vs soft labels[C]// Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE Press, 2016: 566-570.
|
[17] |
RINGEVAL F , EYBEN F , KROUPI E ,et al. Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data[J]. Pattern Recognition Letters, 2015(66): 22-30.
|
[18] |
ZHONG P X , WANG D , MIAO C Y . EEG-based emotion recognition using regularized graph neural networks[J]. IEEE Transactions on Affective Computing, 2022,13(3): 1290-1301.
|
[19] |
PORBADNIGK A K , G?RNITZ N , SANNELLI C ,et al. When brain and behavior disagree:tackling systematic label noise in EEG data with machine learning[C]// Proceedings of 2014 International Winter Workshop on Brain-Computer Interface (BCI). Piscataway:IEEE Press, 2014: 1-4.
|
[20] |
SZEGEDY C , VANHOUCKE V , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 2818-2826.
|
[21] |
KHALILI Z , MORADI M H . Emotion recognition system using brain and peripheral signals:using correlation dimension to improve the results of EEG[C]// Proceedings of 2009 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2009: 1571-1575.
|
[22] |
LIN Y P , WANG C H , JUNG T P ,et al. EEG-based emotion recognition in music listening[J]. IEEE Transactions on Biomedical Engineering, 2010,57(7): 1798-1806.
|
[23] |
MURUGAPPAN M , RIZON M , NAGARAJAN R ,et al. Time-frequency analysis of EEG signals for human emotion detection[C]// Proceedings of 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. Heidelberg:Springer, 2008: 262-265.
|
[24] |
KHOSROWABADI R , QUEK H C , WAHAB A ,et al. EEG-based emotion recognition using self-organizing map for boundary detection[C]// Proceedings of 2010 20th International Conference on Pattern Recognition. Piscataway:IEEE Press, 2010: 4242-4245.
|
[25] |
LIU W , ZHENG W L , LU B L . Emotion recognition using multimodal deep learning[C]// Proceedings of the 23rd International Conference on Neural Information Processing Springer International Publishing. Heidelberg:Springer, 2016: 521-529.
|
[26] |
HASSAN M M , ALAM M G R , UDDIN M Z ,et al. Human emotion recognition using deep belief network architecture[J]. Information Fusion, 2019(51): 10-18.
|
[27] |
VIJAYAKUMAR S , FLYNN R , MURRAY N . A comparative study of machine learning techniques for emotion recognition from peripheral physiological signals[C]// Proceedings of 2020 31st Irish Signals and Systems Conference (ISSC). Piscataway:IEEE Press, 2020: 1-6.
|
[28] |
MERT A , AKAN A . Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J]. Pattern Analysis and Applications, 2018,21(1): 81-89.
|
[29] |
WU S Y , XU X M , SHU L ,et al. Estimation of valence of emotion using two frontal EEG channels[C]// Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Piscataway:IEEE Press, 2017: 1127-1130.
|
[30] |
CHENG C L , WEI X W , JIAN Z . Emotion recognition algorithm based on convolution neural network[C]// Proceedings of 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Piscataway:IEEE Press, 2018: 1-5.
|
[31] |
KWON Y H , SHIN S B , KIM S D . Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system[J]. Sensors, 2018,18(5): 1383.
|
[32] |
CUI H , LIU A P , ZHANG X ,et al. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network[J]. Knowledge-Based Systems, 2020(205): 106243.
|
[33] |
LI D D , CHAI B , WANG Z ,et al. EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021,13(4): 885-897.
|
[34] |
LIU W , QIU J L , ZHENG W L ,et al. Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022,14(2): 715-729.
|
[35] |
LI C , LIN X J , LIU Y ,et al. EEG-based emotion recognition via efficient convolutional neural network and contrastive learning[J]. IEEE Sensors Journal, 2022,22(20): 19608-19619.
|
[36] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 6000-6010.
|
[37] |
HOWARD A G , ZHU M L , CHEN B ,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint, 2017,arXiv:1704.04861.
|
[38] |
KOELSTRA S , MUHL C , SOLEYMANI M ,et al. DEAP:a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012,3(1): 18-31.
|
[39] |
KATSIGIANNIS S , RAMZAN N . DREAMER:a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices[J]. IEEE Journal of Biomedical and Health Informatics, 2018,22(1): 98-107.
|
[40] |
SONG T F , ZHENG W M , SONG P ,et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020,11(3): 532-541.
|
[41] |
CHENG J , CHEN X . Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism[J]. Computers in Biology and Medicine, 2022(143): 105303.
|
[42] |
CHENG J , CHEN M Y , LI C ,et al. Emotion recognition from multi-channel EEG via deep forest[J]. IEEE Journal of Biomedical and Health Informatics, 2021,25(2): 453-464.
|