[1] |
黄立威, 江碧涛, 吕守业 ,等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018,41(7): 1619-1647.
|
|
HUANG L W , JIANG B T , LYU S Y ,et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018,41(7): 1619-1647.
|
[2] |
纪佳琪, 姜学东 . 深度协同过滤推荐模型研究[J]. 计算机应用与软件, 2020,37(7): 240-245.
|
|
JI J Q , JIANG X D . Deep collaborative filtering recommender model[J]. Computer Applications and Software, 2020,37(7): 240-245.
|
[3] |
HE X N , LIAO L Z , ZHANG H W ,et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web.[S.l.:s.n.], 2017: 173-182.
|
[4] |
VEIT A , WILBER M J , BELONGIE S . Residual networks behave like ensembles of relatively shallow networks[J]. Advances in Neural Information Processing Systems, 2016,29: 550-558.
|
[5] |
DENG Z H , HUANG L , WANG C D ,et al. DeepCF:a unified framework of representation learning and matching function learning in recommender system[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33: 61-68.
|
[6] |
SHEN T , ZHOU T Y , LONG G D ,et al. DiSAN:directional self-attention network for RNN/CNN-free language understanding[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2018,32(1).
|
[7] |
ZHANG W F , YU J , HU H ,et al. Multimodal feature fusion by relational reasoning and attention for visual question answering[J]. Information Fusion, 2020,55: 116-126.
|
[8] |
WANG X , HE X N , WANG M ,et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.[S.l.:s.n], 2019: 165-174.
|
[9] |
WU S , TANG Y Y , ZHU Y Q ,et al. Session-based recommendation with graph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 346-353.
|
[10] |
LU Y F , XIE R B , SHI C ,et al. Social influence attentive neural network for friend-enhanced recommendation[C]// Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases.[S.l.:s.n.], 2020: 3-18.
|
[11] |
WANG Z , LIN G Y , TAN H B ,et al. CKAN:collaborative knowledge-aware attentive network for recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2020: 219-228.
|
[12] |
WANG Z Y , WEI W , CONG G ,et al. Global context enhanced graph neural networks for session-based recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2020: 169-178.
|
[13] |
XIA X , YIN H Z , YU J L ,et al. Self-supervised hypergraph convolutional networks for session-based recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(5): 4503-4511.
|
[14] |
ZHANG Y , YANG Q . An overview of multi-task learning[J]. National Science Review, 2017,5(1): 30-43.
|
[15] |
LU Y C , DONG R H , SMYTH B . Why I like it:multi-task learning for recommendation and explanation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York:ACM Press, 2018: 4-12.
|
[16] |
XIAO Y , LI C D , LIU V . DFM-GCN:a multi-task learning recommendation based on a deep graph neural network[J]. Mathematics, 2022,10(5): 721.
|
[17] |
WANG Y Q , DONG L Y , LI Y L ,et al. Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet[J]. PLoS One, 2021,16(5): e0251162.
|
[18] |
LIU W W , ZHANG Y , WANG J L ,et al. Item relationship graph neural networks for E-commerce[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022,33(9): 4785-4799.
|
[19] |
LINDEN G , SMITH B , YORK J.Amazon . com recommendations:item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003,7(1): 76-80.
|
[20] |
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8): 30-37.
|
[21] |
ZHENG S , DING C , NIE F P . Regularized singular value decomposition and application to recommender system[J]. arXiv preprint,2018,arXiv:1804.05090.
|
[22] |
MOLCHANOV P , TYREE S , KARRAS T ,et al. Pruning convolutional neural networks for resource efficient inference[J]. arXiv preprint,2016,arXiv:1611.06440.
|