通信学报 ›› 2021, Vol. 42 ›› Issue (5): 87-97.doi: 10.11959/j.issn.1000-436x.2021061
李陶深1,2, 施安妮1, 王哲3, 何璐1
修回日期:
2020-11-16
出版日期:
2021-05-25
发布日期:
2021-05-01
作者简介:
李陶深(1957- ),男,广西南宁人,博士,广西大学教授、博士生导师,主要研究方向为无线网络、云计算与大数据、网络与信息安全基金资助:
Taoshen LI1,2, Anni SHI1, Zhe WANG3, Lu HE1
Revised:
2020-11-16
Online:
2021-05-25
Published:
2021-05-01
Supported by:
摘要:
为了提高5G无线通信系统性能,引入非正交多址接入(NOMA)技术构建了全双工物联网(IoT)中继系统模型。针对无线携能通信(SWIPT)中继系统,该模型考虑中继节点能够捕获源节点、环路自干扰、空闲能量接入点(EAP)的信号能量,使用 NOMA 技术转发源节点信号与自身信号至不同的目的节点。在该模型基础上,提出了一种基于功率分配协作的 SWIPT 中继选择策略。该策略基于通信服务质量与源节点发射功率等约束建立问题模型,通过数学变换将原非线性0-1规划问题转换为一对耦合优化问题,基于内部优化问题的最优解解决最优中继选择的外部优化问题,利用最优中继选择算法最大化系统吞吐量。仿真结果表明,所提模型和策略在吞吐量增益方面优于传统的最大最小中继选择方案,并且EAP的考虑能够显著提高系统中断性能。
中图分类号:
李陶深, 施安妮, 王哲, 何璐. 基于SWIPT的吞吐量最优化NOMA全双工中继选择策略[J]. 通信学报, 2021, 42(5): 87-97.
Taoshen LI, Anni SHI, Zhe WANG, Lu HE. Optimal relay selection for full duplex SWIPT-NOMA systems with maximal throughput[J]. Journal on Communications, 2021, 42(5): 87-97.
[1] | LI S C , XU L D , ZHAO S S ,et al. 5G Internet of things:a survey[J]. Journal of Industrial Information Integration, 2018,10: 1-9. |
[2] | SISINNI E , SAIFULLAH A , HAN S ,et al. Industrial Internet of things:challenges,opportunities,and directions[J]. IEEE Transactions on Industrial Informatics, 2018,14(11): 4724-4734. |
[3] | ZHANG S Q , WU Q Q , XU S G ,et al. Fundamental green tradeoffs:progresses,challenges,and impacts on 5G networks[J]. IEEE Communications Surveys & Tutorials, 2016,19(1): 33-56. |
[4] | SOLTANMOHAMMADI E , GHAVAMI K , NARAGHI-POUR M . A survey of traffic issues in machine-to-machine communications over LTE[J]. IEEE Internet of Things Journal, 2016,3(6): 865-884. |
[5] | GUO W S , DENG Y S , YILMAZ H B ,et al. SMIET:simultaneous molecular information and energy transfer[J]. IEEE Wireless Communications, 2017,25(1): 106-113. |
[6] | BI S , HO C K , ZHANG R . Recent advances in joint wireless energy and information transfer[C]// 2014 IEEE Information Theory Workshop. Piscataway:IEEE Press, 2014: 341-345. |
[7] | YANG T T , ZHENG Z M , LIANG H ,et al. Green energy and content-aware data transmissions in maritime wireless communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(2): 751-762. |
[8] | LIANG X D , CHEN M , BALASINGHAM I ,et al. Cooperative communications with relay selection for wireless networks:design issues and applications[J]. Wireless Communications and Mobile Computing, 2013,13(8): 745-759. |
[9] | RAZEGHI B , HODTANI G A , NIKAZAD T . Multiple criteria relay selection scheme in cooperative communication networks[J]. Wireless Personal Communications, 2017,96(2): 2539-2561. |
[10] | 李陶深, 宁倩丽, 王哲 . 优化传输性能的机会协作中继系统动态时间分配策略研究[J]. 北京邮电大学学报, 2018,42(5): 36-41. |
LI T S , NING Q L , WANG Z . Dynamic time allocation strategy of opportunity cooperative relay system for optimizing transmission performance[J]. Journal of Beijing University of Posts and Telecommunications, 2018,42(5): 36-41. | |
[11] | RAUNIYAR A , ENGELSTAD P , STERB O N . RF energy harvesting and information transmission based on NOMA for wireless powered IoT relay systems[J]. Sensors, 2018,18(3254): 1-22. |
[12] | 王哲, 李陶深, 叶进 ,等. 能量收集网络技术研究与发展[J]. 广西科学, 2019,26(3): 253-266. |
WANG Z , LI T S , YE J ,et al. Research and development of energy collection network technology[J]. Guangxi Science, 2019,26(3): 253-266. | |
[13] | ZHANG R , HO C K . MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013,12(5): 1989-2001. |
[14] | ZHOU X , ZHANG R , HO C K . Wireless information and power transfer:architecture design and rate-energy tradeoff[J]. IEEE Transactions on Communications, 2013,61(11): 4754-4767. |
[15] | NASIR A A , ZHOU X , DURRANI S ,et al. Relaying protocols for wireless energy harvesting and information processing[J]. IEEE Transactions on Wireless Communications, 2013,12(7): 3622-3636. |
[16] | LIU X L , LI Z , WANG C . Secure decode-and-forward relay SWIPT systems with power splitting schemes[J]. IEEE Transactions on Vehicular Technology, 2018,67(8): 7341-7354. |
[17] | DING Z G , PERLAZA S M , ESNAOLA I ,et al. Power allocation strategies in energy harvesting wireless cooperative networks[J]. IEEE Transactions on Wireless Communications, 2014,13(2): 846-860. |
[18] | HU L S , ZHANG C , DING Z G . Dynamic power splitting policies for AF relay networks with wireless energy harvesting[C]// 2015 IEEE International Conference on Communication Workshop. Piscataway:IEEE Press, 2015: 2035-2039. |
[19] | ZENG Y , ZHANG R . Full-duplex wireless-powered relay with self-energy recycling[J]. IEEE Wireless Communications Letters, 2015,4(2): 201-204. |
[20] | ZHONG C J , SURAWEERA H A , ZHENG G ,et al. Wireless information and power transfer with full duplex relaying[J]. IEEE Transactions on Communications, 2014,62(10): 3447-3461. |
[21] | LIU H W , KIM K J , KWAK K S ,et al. Power splitting-based SWIPT with decode-and-forward full-duplex relaying[J]. IEEE Transactions on Wireless Communications, 2016,15(11): 7561-7577. |
[22] | 楚万顺, 张起贵 . 基于全双工中继网络的功率分配优化策略[J]. 计算机工程, 2018,44(1): 149-153. |
CHU W S , ZHANG Q G . Power allocation optimization strategy based on full-duplex relay network[J]. Computer Engineering, 2018,44(1): 149-153. | |
[23] | 鲍慧, 李梦辉, 赵伟 . 全双工中继协作下认知 MIMO 系统的自干扰收集[J]. 华中科技大学学报:自然科学版, 2019,47(6): 17-22. |
BAO H , LI M H , ZHAO W . Self-interference harvesting analysis for MIMO cognitive radio network with full-duplex relay[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019,47(6): 17-22. | |
[24] | WU Q Q , CHEN W , NG D W K ,et al. Spectral and energy-efficient wireless powered IoT networks:NOMA or TDMA?[J]. IEEE Transactions on Vehicular Technology, 2018,67(7): 6663-6667. |
[25] | DING Z , YANG Z , FAN P ,et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users[J]. IEEE signal processing letters, 2014,21(12): 1501-1505. |
[26] | KADER M F , SHAHAB M B , SHIN S Y . Non-orthogonal multiple access for a full-duplex cooperative network with virtually paired users[J]. Computer Communications, 2018,120: 1-9. |
[27] | WAN D H , WEN M W , JI F ,et al. Non-orthogonal multiple access for cooperative communications:challenges,opportunities,and trends[J]. IEEE Wireless Communications, 2018,25(2): 109-117. |
[28] | TREGANCINI A , OLIVO E E B , OSORIO D P M ,et al. Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection[J]. IEEE Transactions on Vehicular Technology, 2020,69(1): 622-635. |
[29] | YUE X W , LIU Y W , KANG S L ,et al. Spatially random relay selection for full/half-duplex cooperative NOMA networks[J]. IEEE Transactions on Communications, 2018,66(8): 3294-3308. |
[30] | LIU Y W , DING Z G , EIKASHLAN M ,et al. Cooperative non-orthogonal multiple access in 5G systems with SWIPT[C]// 2015 23rd European signal processing conference. Piscataway:IEEE Press, 2015: 1999-2003. |
[31] | 李陶深, 宁倩丽, 王哲 . SWIPT-NOMA 机会协作系统的优化方案[J]. 通信学报, 2020,41(8): 141-154. |
LI T S , NING Q L , WANG Z . Optimization scheme for the SWIPT-NOMA opportunity cooperative system[J]. Journal on Communications, 2020,41(8): 141-154. | |
[32] | YE Y H , LI Y Z , WANG D ,et al. Power splitting protocol design for the cooperative NOMA with SWIPT[C]// 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2017: 1-5. |
[33] | NGUYEN B C , HOANG T M , TRAN P T ,et al. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay[J]. AEU-International Journal of Electronics and Communications, 2020,116: 1-9. |
[34] | ZHOU Y N , LI T S , WANG Z ,et al. Non-time-sharing full-duplex SWIPT relay system with energy access point[C]// International Symposium on Parallel Architectures,Algorithms and Programming. Berlin:Springer, 2019: 83-97. |
[35] | HU Z W , YUAN C W , ZHU F C ,et al. Weighted sum transmit power minimization for full-duplex system with SWIPT and self-energy recycling[J]. IEEE Access, 2016,4: 4874-4881. |
[36] | CHONG E K P , ZAK S H . An introduction to optimization (fourth edition)[M]. New Jersey: John Wiley & Sons, 2013. |
[37] | JING Y D , JAFARKHANI H . Single and multiple relay selection schemes and their achievable diversity orders[J]. IEEE Transactions on Wireless Communications, 2009,8(3): 1414-1423. |
[38] | WANG D X , ZHANG R Q , CHENG X ,et al. Full-duplex energy-harvesting relay networks:capacity-maximizing relay selection[J]. Journal of Communications & Information Networks, 2018,3: 79-85. |
[1] | 杨龙, 赵丽, 周雨晨, 贺冰涛, 陈健. 缓存辅助的协作NOMA携能传输[J]. 通信学报, 2023, 44(6): 77-89. |
[2] | 杨正, 郑云, 余月好, 吴怡, 董志诚, 邢松. 基于自适应功率分裂的协作非正交多址接入无线携能通信网络性能分析[J]. 通信学报, 2023, 44(1): 177-188. |
[3] | 孙钢灿, 吴新李, 郝万明, 朱政宇. 基于时延线阵列的毫米波NOMA系统混合预编码设计和功率分配[J]. 通信学报, 2022, 43(6): 179-188. |
[4] | 张钰, 赵雄文, 王晓晴, 耿绥燕, 秦鹏, 周振宇. 多载波NOMA安全通信系统稳健性资源分配算法[J]. 通信学报, 2022, 43(3): 42-52. |
[5] | 孙巍, 宋清洋, 郭磊. 智能反射表面辅助的无线携能通信网络资源分配算法[J]. 通信学报, 2022, 43(2): 34-43. |
[6] | 王哲, 李陶深, 葛丽娜, 张桂芬, 吴敏. 基于深度学习的传感云sink节点最优能效SWIPT波束成形设计[J]. 通信学报, 2021, 42(7): 176-188. |
[7] | 王义君, 张有旭, 刘大鹍, 陈桂芬. 基于自私行为分析的超密集D2D中继选择算法[J]. 通信学报, 2021, 42(4): 119-126. |
[8] | 朱政宇, 徐金雷, 孙钢灿, 王宁, 郝万明. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185-193. |
[9] | 张朝阳, 吴佳佳, 王珏, 周楚. 联合时域-波束域非正交多址接入[J]. 通信学报, 2021, 42(4): 76-88. |
[10] | 孙钢灿, 赵少柯, 郝万明, 朱政宇. 基于短包通信的NOMA下行链路安全传输[J]. 通信学报, 2021, 42(2): 168-176. |
[11] | 张士兵,韩刘可,张美娟. 基于能量收集的全双工认知中继网络功率分配算法[J]. 通信学报, 2020, 41(9): 139-146. |
[12] | 景小荣,陈怡西,陈前斌. 基于Matern簇过程的NOMA-HetNet覆盖概率分析[J]. 通信学报, 2020, 41(9): 147-159. |
[13] | 徐朝农,吴建雄,徐勇军. 时延有界的PD-NOMA物联网高可靠接入算法[J]. 通信学报, 2020, 41(9): 210-221. |
[14] | 李国权,林金朝,徐勇军,黄正文,刘挺. 无人机辅助的NOMA网络用户分组与功率分配算法[J]. 通信学报, 2020, 41(9): 21-28. |
[15] | 赵飞,郝万明,孙钢灿,周一青,王飞,王毅. 基于SWIPT的毫米波大规模MIMO-NOMA系统下安全能效资源优化[J]. 通信学报, 2020, 41(8): 79-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|