[1] |
WANG Z , PARKINSON T , LI P X ,et al. The squeaky wheel:machine learning for anomaly detection in subjective thermal comfort votes[J]. Building and Environment, 2019,151: 219-227.
|
[2] |
VIKRAM M , PAVAN R , DINESHBHAI N D ,et al. Performance evaluation of dimensionality reduction techniques on high dimensional data[C]// 2019 3rd International Conference on Trends in Electronics and Informatics. Piscataway:IEEE Press, 2019: 1169-1174.
|
[3] |
BYRNE J J , MORGAN J L , TWICKLER D M ,et al. Utility of follow-up standard sonography for fetal anomaly detection[J]. American Journal of Obstetrics and Gynecology, 2020,222(6): 615.e1-615.e9.
|
[4] |
NAKAZAWA T , KULKARNI D V . Anomaly detection and segmentation for wafer defect patterns using deep convolutional encoder–decoder neural network architectures in semiconductor manufacturing[J]. IEEE Transactions on Semiconductor Manufacturing, 2019,32(2): 250-256.
|
[5] |
TERAUCHI T , AIKEN A . Secure information flow as a safety problem[M]. Berlin: Springer, 2005: 352-367.
|
[6] |
DURUMERIC Z , MA Z N , SPRINGALL D ,et al. The security impact of HTTPS interception[C]// 2017 Network and Distributed System Security Symposium. Virginia:the Internet Society, 2017: 1-5.
|
[7] |
WANG L L , . Research on distributed parallel dimensionality reduction algorithm based on PCA algorithm[C]// 2019 IEEE 3rd Information Technology,Networking,Electronic and Automation Control Conference. Piscataway:IEEE Press, 2019: 1363-1367.
|
[8] |
GHOSH J , SHUVO S B . Improving classification model's performance using linear discriminant analysis on linear data[C]// 2019 10th International Conference on Computing,Communication and Networking Technologies. Piscataway:IEEE Press, 2019: 1-5.
|
[9] |
WU D , XIONG N X , HE J R ,et al. Critical data points-based unsupervised linear dimension reduction technology for science data[J]. The Journal of Supercomputing, 2016,72(8): 2962-2976.
|
[10] |
SARASWATI A , NGUYEN V T , HAGENBUCHNER M ,et al. High-resolution self-organizing maps for advanced visualization and dimension reduction[J]. Neural Networks, 2018,105: 166-184.
|
[11] |
张军平, 王珏 . 主曲线研究综述[J]. 计算机学报, 2003,26(2): 129-146.
|
|
ZHANG J P , WANG J . An overview of principal curves[J]. Chinese Journal of Computers, 2003,26(2): 129-146.
|
[12] |
BALCAN M F , LIANG Y , SONG L . Communication efficient distributed kernel principal component analysis[J]. Computer Science, 2016,27(4): 555-559.
|
[13] |
NOURI M , MIVEHCHY M , AGHDAM S A . Adaptive time-frequency kernel local fisher discriminant analysis to distinguish range deception jamming[C]// 2015 6th International Conference on Computing,Communication and Networking Technologies. Piscataway:IEEE Press, 2015: 1-5.
|
[14] |
CAO Z Y , JI G L , TAN C . Improvement of algorithm multi-manifold LLE learning[J]. Computer Engineering and Applications, 2018,54(24): 156-163.
|
[15] |
石陆魁, 郭林林, 房子哲 ,等. 基于Spark的并行ISOMAP算法[J]. 中国科学技术大学学报, 2019,49(10): 842-850.
|
|
SHI L K , GUO L L , FANG Z Z ,et al. Parallel ISOMAP algorithm based on Spark[J]. Journal of University of Science and Technology of China, 2019,49(10): 842-850.
|
[16] |
SUN W W , YANG G , DU B ,et al. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7): 4032-4046.
|
[17] |
CHEN X Z . LTSA algorithm for dimension reduction of microarray data[J]. Advanced Materials Research, 2013,645: 192-195.
|
[18] |
ZHU B , LIU J Z , CAULEY S F ,et al. Image reconstruction by domain-transform manifold learning[J]. Nature, 2018,555(7697): 487-492.
|
[19] |
DING C , QI H D . Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction[J]. Mathematical Programming, 2017,164(1/2): 341-381.
|
[20] |
NING X , LI W J , TANG B ,et al. BULDP:biomimetic uncorrelated locality discriminant projection for feature extraction in face recognition[J]. IEEE Transactions on Image Processing, 2018,27(5): 2575-2586.
|
[21] |
VURAL E , GUILLEMOT C . A study of the classification of low-dimensional data with supervised manifold learning[J]. The Journal of Machine Learning Research, 2017,18(1): 5741-5795.
|
[22] |
李锋, 汤宝平, 王家序 ,等. 基于图嵌入概率半监督判别分析的故障辨识[J]. 机械工程学报, 2017,53(9): 92-100.
|
|
LI F , TANG B P , WANG J X ,et al. Fault identification method based on graph-implanted probability-based semi-supervised discriminant analysis[J]. Journal of Mechanical Engineering, 2017,53(9): 92-100.
|
[23] |
GURUNG S , GHOSE M K , SUBEDI A . Deep learning approach on network intrusion detection system using NSL-KDD dataset[J]. International Journal of Computer Network and Information Security, 2019,11(3): 8-14.
|