通信学报 ›› 2022, Vol. 43 ›› Issue (4): 202-215.doi: 10.11959/j.issn.1000-436x.2022066
杨力1, 潘成胜2, 孔相广3, 黄琦龙1, 戚耀文1
修回日期:
2022-03-07
出版日期:
2022-04-25
发布日期:
2022-04-01
作者简介:
杨力(1982- ),女,黑龙江哈尔滨人,博士,南京理工大学教授、博士生导师,主要研究方向为指挥与控制网络系统理论与技术、一体化通信网络协议理论与方法等基金资助:
Li YANG1, Chengsheng PAN2, Xiangguang KONG3, Qilong HUANG1, Yaowen QI1
Revised:
2022-03-07
Online:
2022-04-25
Published:
2022-04-01
Supported by:
摘要:
在总结5G融合卫星网络(5GSIN)的标准化工作和国内外研究现状的基础上,对5GSIN的关键技术、应用和网络架构几个重点方向的研究进展进行了阐述与分析。针对融合网络异构性强、时空尺度大而导致的关键问题,提出了对5GSIN架构的思考,并设计了多层分布式异构融合网络架构和架构管理方法。最后,从智能化网络角度分析5GSIN未来发展的几个重点方向,以期对相关领域的研究提供一定的参考。
中图分类号:
杨力, 潘成胜, 孔相广, 黄琦龙, 戚耀文. 5G融合卫星网络研究综述[J]. 通信学报, 2022, 43(4): 202-215.
Li YANG, Chengsheng PAN, Xiangguang KONG, Qilong HUANG, Yaowen QI. Review on 5G-satellite integrated network[J]. Journal on Communications, 2022, 43(4): 202-215.
表1
5GSIN研究现状"
国家和地区 | 项目 | 支持机构 | 总体目标 | 应用场景 | 时间 |
美国 | Omnispace | Omnispace | 重新定义21世纪的移动连接,探寻从太空整合5G的能力 | 加速和扩大5G移动宽带在全球的覆盖范围 | 2016年 |
AST SpaceMobile | AST & Science | 填补全球50多亿人的网络覆盖空白 | 在危机或自然灾害中的连接;连接未连接 | 2019年 | |
5G-VINNI | 建立端到端的设施验证5G技术性能,探索垂直行业解决方案 | 公共安全、媒体等垂直行业解决方案 | 2018年 | ||
SANSA | Horizon 2020 | 提高回程能力,卫星与地面无缝集成、共享频谱和拓扑重建 | 应用于农村和城市地区网络服务 | 2016年 | |
欧洲 | Sat5G | 为5G开发一个经济高效的“即插即用”卫星通信解决方案。 | 5G固定/移动回程,边缘内容交付等 | 2017年 | |
SATis5 | ESA | 构建一个大型实时端到端的5G卫星地面网络概念验证平台 | 5G 应用场景演示,实时空中通信现场演示 | 2017年 | |
EdgeSAT | 为SatCom带来边缘网络概念和能力的优势 | 应用于从卫星角度处理边缘网络计算问题 | 2019年 | ||
韩国/欧洲 | 5GALLSTAR | Horizon 2020、EU-Korea | 开发一套技术和验证系统,促进卫星网络与5G的集成 | 提供支持欧洲和韩国地区的关键应用 | 2018年 |
加拿大 | Telesat | Telesat | 提供高容量、高安全性、高可靠性和低时延的高速网络 | 提供农村网络服务和全加拿大网络连接 | 2022年 |
卢森堡 | SES | SES | 构建全球内容连接解决方案,连接更多地方的更多人 | 赋能于高价值的5G应用和使用案例 | 2016年 |
中国 | 银河航天 | 银河航天 | 让 5G+卫星连接地球每个角落,建立覆盖全球的天地融合网络 | 陆地/海洋通信网,工业服务 | 2018年 |
鸿雁星座 | 中国航天 | 沟通连接万物、全球永不失联 | 全球无缝覆盖的通信保障和互联网接入 | 2018年 |
[1] | ANDREWS J G , BUZZI S , CHOI W ,et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014,32(6): 1065-1082. |
[2] | WANG Y X , YANG J , GUO X Y ,et al. A game-theoretic approach to computation offloading in satellite edge computing[J]. IEEE Access, 2019,8: 12510-12520. |
[3] | LIAO H J , ZHOU Z Y , ZHAO X W ,et al. Learning-based queue-aware task offloading and resource allocation for space-air-ground-integrated power IoT[J]. IEEE Internet of Things Journal, 2021,8(7): 5250-5263. |
[4] | BIYOGHE J S , BALYAN V . A comprehensive survey of existing researches on NOMA-based integrated satellite-terrestrial networks for 5G[C]// Information and Communication Technology for Competitive Strategies. Berlin:Springer, 2021: 369-377. |
[5] | SADOUNI S , BENSLAMA M , BEYLOT A L ,et al. New convergence architecture between 5G mobile telecommunication networks and satellite networks to enhance their capacities and improve their performance[C]// Proceedings of the 4th International Conference on Electrical Engineering and Control Applications. Berlin:Springer, 2019: 1247-1257. |
[6] | QU Z C , ZHANG G X , CAO H T ,et al. LEO satellite constellation for Internet of things[J]. IEEE Access, 2017,5: 18391-18401. |
[7] | KODHELI O , GUIDOTTI A , VANELLI-CORALLI A , . Integration of satellites in 5G through LEO constellations[C]// Proceedings of 2017 IEEE Global Communications Conference. Piscataway:IEEE Press, 2017: 1-6. |
[8] | BOERO L , BRUSCHI R , DAVOLI F ,et al. Satellite networking integration in the 5G ecosystem:research trends and open challenges[J]. IEEE Network, 2018,32(5): 9-15. |
[9] | 3GPP. Study on scenarios and requirements for next generation access technologies[R]. 2017. |
[10] | MATTHEW I . Global 5G landscape,Q1 2021[R]. 2021. |
[11] | GIAMBENE G , KOTA S , PILLAI P . Satellite-5G integration:a network perspective[J]. IEEE Network, 2018,32(5): 25-31. |
[12] | LIOLIS K , CAHILL J , HIGGINS E ,et al. Over-the-air demonstration of satellite integration with 5G core network and multi-access edge computing use case[C]// Proceedings of 2019 IEEE 2nd 5G World Forum (5GWF). Piscataway:IEEE Press, 2019: 1-5. |
[13] | 3GPP. Study on management and orchestration aspects of integrated satellite components in a 5G network[R]. 2019. |
[14] | MAMUSHIANE L , LYSKO A A , MUKUTE T ,et al. Overview of 9 open-source resource orchestrating ETSI MANO compliant implementations:a brief survey[C]// Proceedings of 2019 IEEE 2nd Wireless Africa Conference. Piscataway:IEEE Press, 2019: 1-7. |
[15] | KHALILI H , SAYYAD K P , FERNANDEZ C ,et al. Benefits and challenges of software defined satellite-5G communication[C]// Proceedings of 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS). Piscataway:IEEE Press, 2019: 1-4. |
[16] | KHODASHENAS P S , KHALILI H , GUIJA D ,et al. TALENT:towards integration of satellite and terrestrial networks[C]// Proceedings of 2019 European Conference on Networks and Communications (EuCNC). Piscataway:IEEE Press, 2019: 167-171. |
[17] | ARTIGA XJ , NUNEZ-MARTINEZ J , PEREZ-NEIRA A ,et al. Terrestrial-satellite integration in dynamic 5G backhaul networks[C]// Proceedings of 2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC). Piscataway:IEEE Press, 2016: 1-6. |
[18] | CHOI T , WON S H , GIUSEPPI A ,et al. Management and orchestration architecture for integrated access of satellite and terrestrial in 5G[C]// Proceedings of 2020 International Conference on Information Networking (ICOIN). Piscataway:IEEE Press, 2020: 40-45. |
[19] | WANG Y J , ZHANG J X , ZHANG X ,et al. A computation offloading strategy in satellite terrestrial networks with double edge computing[C]// Proceedings of 2018 IEEE International Conference on Communication Systems. Piscataway:IEEE Press, 2018: 450-455. |
[20] | LIU L , ZHANG J X , ZHANG X ,et al. Design and analysis of cooperative multicast-unicast transmission scheme in hybrid satellite-terrestrial networks[C]// Proceedings of 2018 IEEE International Conference on Communication Systems. Piscataway:IEEE Press, 2018: 309-314. |
[21] | ZHANG N , ZHANG S , YANG P ,et al. Software defined space-air-ground integrated vehicular networks:challenges and solutions[J]. IEEE Communications Magazine, 2017,55(7): 101-109. |
[22] | SHI Y P , CAO Y R , LIU J J ,et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019,33(1): 29-35. |
[23] | XIE R C , TANG Q Q , WANG Q N ,et al. Satellite-terrestrial integrated edge computing networks:architecture,challenges,and open issues[J]. IEEE Network, 2020,34(3): 224-231. |
[24] | ZHANG Z J , ZHANG W Y , TSENG F H . Satellite mobile edge computing:improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019,33(1): 70-76. |
[25] | WEI J Y , HAN J R , CAO S Z . Satellite IoT edge intelligent computing:a research on architecture[J]. Electronics, 2019,8(11): 1247. |
[26] | TORKZABAN N , BARAS J S . Joint satellite gateway deployment &controller placement in software-defined 5G-satellite integrated networks[J]. arXiv Preprint,arXiv:2103.08735, 2021. |
[27] | JIN C , HE X , DING X J . Traffic analysis of LEO satellite Internet of things[C]// Proceedings of 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2019: 67-71. |
[28] | DORéJ B , BERG V . Turbo-FSK:a 5G NB-IoT evolution for LEO satellite networks[C]// Proceedings of 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway:IEEE Press, 2018: 1040-1044. |
[29] | CIONI S , GAUDENZI R D , HERRERO O D R ,et al. On the satellite role in the era of 5G massive machine type communications[J]. IEEE Network, 2018,32(5): 54-61. |
[30] | DI B Y , SONG L Y , LI Y H ,et al. Ultra-dense LEO:integration of satellite access networks into 5G and beyond[J]. IEEE Wireless Communications, 2019,26(2): 62-69. |
[31] | KODHELI O , ANDRENACCI S , MATURO N ,et al. An uplink UE group-based scheduling technique for 5G mMTC systems over LEO satellite[J]. IEEE Access, 2019,7: 67413-67427. |
[32] | GINESTE M , DELEU T , COHEN M ,et al. Narrowband IoT service provision to 5G user equipment via a satellite component[C]// Proceedings of 2017 IEEE Globecom Workshops. Piscataway:IEEE Press, 2017: 1-4. |
[33] | LIOLIS K , GEURTZ A , SPERBER R ,et al. Satellite use cases and scenarios for 5G eMBB[J]. Satellite Communications in the 5G Era, 2018: 25-60. |
[34] | WANG N , NOUWELL N , GE C ,et al. Satellite support for enhanced mobile broadband content delivery in 5G[C]// Proceedings of 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Piscataway:IEEE Press, 2018: 1-6. |
[35] | GE C , WANG N , SELINIS I ,et al. QoE-assured live streaming via satellite backhaul in 5G networks[J]. IEEE Transactions on Broadcasting, 2019,65(2): 381-391. |
[36] | LUGLIO M , ROMANO S P , ROSETI C ,et al. Service delivery models for converged satellite-terrestrial 5G network deployment:a satellite-assisted CDN use-case[J]. IEEE Network, 2019,33(1): 142-150. |
[37] | XUE K P , MENG W , LI S H ,et al. A secure and efficient access and handover authentication protocol for Internet of things in space information networks[J]. IEEE Internet of Things Journal, 2019,6(3): 5485-5499. |
[38] | QIAN Y B , MA L , LIANG X W . The performance of chirp signal used in LEO satellite Internet of things[J]. IEEE Communications Letters, 2019,23(8): 1319-1322. |
[39] | YANG D M , ZHOU Y H , HUANG W T ,et al. 5G mobile communication convergence protocol architecture and key technologies in satellite Internet of things system[J]. Alexandria Engineering Journal, 2021,60(1): 465-476. |
[40] | WANG B , CHEN C Q , ZHANG T C . Commercial vehicle road collaborative system based on 5G-V2X and satellite navigation technologies[C]// China Satellite Navigation Conference (CSNC 2021) Proceedings. Berlin:Springer, 2021: 274-282. |
[41] | LIU S C , GAO Z , WU Y P ,et al. LEO satellite constellations for 5G and beyond:how will they reshape vertical domains?[J]. IEEE Communications Magazine, 2021,59(7): 30-36. |
[42] | LIN X Q , HOFSTR?M B , WANG Y P E ,et al. 5G new radio evolution meets satellite communications:opportunities,challenges,and solutions[M]. Cham: Springer International Publishing, 2021. |
[43] | 3GPP. 5G service requirements for next generation new services and markets (release 15):TS 22.261[S]. 2018. |
[44] | 3GPP. Study on new radio (NR) to support non-terrestrial networks (release 15):TS 38.811[S]. 2019. |
[45] | 3GPP. Solutions for NR to support non-terrestrial networks[R]. 2019. |
[46] | 3GPP. Study on using satellite access in 5G[R]. 2018. |
[47] | LIN X Q , ROMMER S , EULER S ,et al. 5G from space:an overview of 3GPP non-terrestrial networks[J]. IEEE Communications Standards Magazine, 2021,5(4): 147-153. |
[48] | KREUTZ D , RAMOS F M V , VERíSSIMO P E , ,et al. Software-defined networking:a comprehensive survey[J]. Proceedings of the IEEE, 2015,103(1): 14-76. |
[49] | HAN B , GOPALAKRISHNAN V , JI L S ,et al. Network function virtualization:challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015,53(2): 90-97. |
[50] | FERRúS R , KOUMARAS H , SALLENT o ,et al. SDN/NFV-enabled satellite communications networks:opportunities,scenarios and challenges[J]. Physical Communication, 2016,18: 95-112. |
[51] | SHI W S , CAO J , ZHANG Q ,et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal, 2016,3(5): 637-646. |
[52] | HU Y C , PATEL M , SABELLA D ,et al. Mobile edge computing-a key technology towards 5G[J]. ETSI White Paper, 2015,11(11): 1-16. |
[53] | 谢人超, 廉晓飞, 贾庆民 ,等. 移动边缘计算卸载技术综述[J]. 通信学报, 2018,39(11): 138-155. |
XIE R C , LIAN X F , JIA Q M ,et al. Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018,39(11): 138-155. | |
[54] | 李子姝, 谢人超, 孙礼 ,等. 移动边缘计算综述[J]. 电信科学, 2018,34(1): 87-101. |
LI Z S , XIE R C , SUN L ,et al. A survey of mobile edge computing[J]. Telecommunications Science, 2018,34(1): 87-101. | |
[55] | YANG L , KONG X G , QI Y W ,et al. A collaborative cache strategy in satellite-ground integrated network based on multiaccess edge computing[J]. Wireless Communications and Mobile Computing,2021, 2021:8121509. |
[56] | GU S S , WANG Y , WANG N N ,et al. Intelligent optimization of availability and communication cost in satellite-UAV mobile edge caching system with fault-tolerant codes[J]. IEEE Transactions on Cognitive Communications and Networking, 2020,6(4): 1230-1241. |
[57] | NGUYEN H X , TRESTIAN R , TO D ,et al. Digital twin for 5G and beyond[J]. IEEE Communications Magazine, 2021,59(2): 10-15. |
[58] | 中国电子信息产业发展研究院. 数字孪生白皮书[R]. 2021. |
China Center for Information Industry Development. White paper on digital twin[R]. 2021. | |
[59] | Nokia. 5G from space - the role of satellites in 5G[EB]. 2021. |
[60] | NETWORLD2020. NetWorld2020’s - SatCom WG the role of satellites in 5G[R]. 2014. |
[61] | MENDOZA F , FERRUS R , SALLENT O . Experimental proof of concept of an SDN-based traffic engineering solution for hybrid satellite-terrestrial mobile backhauling[J]. International Journal of Satellite Communications and Networking, 2019,37(6): 630-645. |
[62] | ZANGAR N , HENDAOUI S . Leveraging multiuser diversity for adaptive hybrid satellite-LTE downlink scheduler (H-MUDoS) in emerging 5G-satellite network[J]. International Journal of Satellite Communications and Networking, 2019,37(2): 113-125. |
[63] | MUHAMMAD K , KHAN S , ELHOSENY M ,et al. Efficient fire detection for uncertain surveillance environment[J]. IEEE Transactions on Industrial Informatics, 2019,15(5): 3113-3122. |
[64] | XU F M , YANG F , ZHAO C L ,et al. Deep reinforcement learning based joint edge resource management in maritime network[J]. China Communications, 2020,17(5): 211-222. |
[65] | KIM J , CASATI G , CASSIAU N ,et al. Design of cellular,satellite,and integrated systems for 5G and beyond[J]. ETRI Journal, 2020,42(5): 669-685. |
[66] | SONG Z Y , HAO Y Y , LIU Y W ,et al. Energy-efficient multiaccess edge computing for terrestrial-satellite Internet of things[J]. IEEE Internet of Things Journal, 2021,8(18): 14202-14218. |
[67] | 中国移动通信集团公司. 中国移动物模型标准白皮书[R]. 2020. |
China Mobile Communications Corporation. White paper on thing model standard[R]. 2020. | |
[68] | 胡诚 . 基于信息年龄的双向数据交换系统的时效性研究[D]. 南京:南京信息工程大学, 2020. |
HU C . Research on timeliness of two-way data exchange systems under the age of information measure[D]. Nanjing:Nanjing University of Information Science & Technology, 2020. | |
[69] | TIAN D , ZHAO Y , TONG J F ,et al. Frequency offset estimation for 5G based LEO satellite communication systems[C]// Proceedings of 2019 IEEE/CIC International Conference on Communications in China. Piscataway:IEEE Press, 2019: 647-652. |
[70] | SAARNISAARI H , DE LIMA C M . 5G NR over satellite links:evaluation of synchronization and random access processes[C]// Proceedings of 2019 21st International Conference on Transparent Optical Networks (ICTON). Piscataway:IEEE Press, 2019: 1-4. |
[71] | GUIDOTTI A , VANELLI-CORALLI A , CONTI M ,et al. Architectures and key technical challenges for 5G systems incorporating satellites[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2624-2639. |
[72] | MALANDRINO F , CHIASSERINI C F . Federated learning at the network edge:when not all nodes are created equal[J]. IEEE Communications Magazine, 2021,59(7): 68-73. |
[73] | KHAN L U , PANDEY S R , TRAN N H ,et al. Federated learning for edge networks:resource optimization and incentive mechanism[J]. IEEE Communications Magazine, 2020,58(10): 88-93. |
[74] | NIKNAM S , DHILLON H S , REED J H . Federated learning for wireless communications:motivation,opportunities,and challenges[J]. IEEE Communications Magazine, 2020,58(6): 46-51. |
[75] | KHALILI H , KHODASHENAS P S , GUIJA D ,et al. Introducing terrestrial satellite resource orchestration layer[C]// Proceedings of 2019 21st International Conference on Transparent Optical Networks (ICTON). Piscataway:IEEE Press, 2019: 1-4. |
[1] | 鲁蔚锋, 李宁, 徐佳, 徐力杰, 徐建. 多接入边缘计算中相关性任务的联合调度算法[J]. 通信学报, 2023, 44(4): 87-98. |
[2] | 陈浩, 杨芫, 徐明伟, 裴丹, 尤艺霖. 支持多模态网络的可扩展异构服务功能链并行编排部署系统[J]. 通信学报, 2022, 43(9): 1-11. |
[3] | 徐泽汐, 庄雷, 张坤丽, 桂明宇. 基于知识图谱的服务功能链在线部署算法[J]. 通信学报, 2022, 43(8): 41-51. |
[4] | 张海君, 陈安琪, 李亚博, 隆克平. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189-202. |
[5] | 罗洪斌, 张珊, 王志远. 共生网络——异构网络安全高效互联的体系结构与机理[J]. 通信学报, 2022, 43(4): 36-49. |
[6] | 曹阳, 钟烨, 彭醇陵, 彭小峰. 基于混合供能和能量协作的异构网络能量效率优化算法[J]. 通信学报, 2022, 43(3): 135-147. |
[7] | 邱航, 汤红波, 游伟, 赵宇, 柏溢. NFV中基于量子遗传算法的网络服务扩展算法[J]. 通信学报, 2022, 43(11): 44-52. |
[8] | 神显豪, 曾紫玲, 牛少华. 面向异构网络的可重构智能表面辅助资源优化方法[J]. 通信学报, 2022, 43(11): 171-182. |
[9] | 王鹏, 张修社, 索龙, 史可懿. 基于随机时变图的时间确定性网络路由算法[J]. 通信学报, 2021, 42(9): 21-30. |
[10] | 王雪, 刘京, 孙佳妮, 张继真, 钱志鸿. 基于谱聚类的异构蜂窝超密集网络高能效资源分配算法[J]. 通信学报, 2021, 42(7): 162-175. |
[11] | 王慧强, 高凯旋, 吕宏武. 高精度室内定位研究评述及未来演进展望[J]. 通信学报, 2021, 42(7): 198-210. |
[12] | 苏新, 薛淏阳, 周一青, 朱金秀. 面向海洋观监测传感网的计算卸载方法研究[J]. 通信学报, 2021, 42(5): 149-163. |
[13] | 王泽南, 张娇, 汪硕, 黄韬, F.RichardYu. 端到端时延上限确定的服务链部署算法[J]. 通信学报, 2021, 42(11): 66-78. |
[14] | 黄韬, 刘江, 汪硕, 张晨, 刘韵洁. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150. |
[15] | 李贺武,刘李鑫,刘君,吴茜. 基于位置的天地一体化网络路由寻址机制研究[J]. 通信学报, 2020, 41(8): 120-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|