通信学报 ›› 2022, Vol. 43 ›› Issue (6): 108-118.doi: 10.11959/j.issn.1000-436x.2022092

• 学术论文 • 上一篇    下一篇

密码服务资源按需高效调度方案

寇文龙1,2, 张宇阳1, 李凤华1,2,3, 曹晓刚2,3, 李佳旻1, 王竹2,3, 耿魁2   

  1. 1 西安电子科技大学网络与信息安全学院,陕西 西安 710071
    2 中国科学院信息工程研究所,北京100093
    3 中国科学院大学网络空间安全学院,北京 100049
  • 修回日期:2022-03-12 出版日期:2022-06-01 发布日期:2022-06-01
  • 作者简介:寇文龙(1990- ),男,河南许昌人,西安电子科技大学博士生,主要研究方向为信息安全
    张宇阳(1995- ),男,山东淄博人,西安电子科技大学硕士生,主要研究方向为电子与通信工程
    李凤华(1966- ),男,湖北浠水人,博士,中国科学院信息工程研究所研究员、博士生导师,主要研究方向为网络与系统安全、信息保护、隐私计算
    曹晓刚(1996- ),男,河北邢台人,中国科学院信息工程研究所博士生,主要研究方向为信息安全
    李佳旻(1993- ),男,山西吕梁人,西安电子科技大学博士生,主要研究方向为隐私计算、机器学习、联邦学习
    王竹(1972- ),女,山西太原人,博士,中国科学院信息工程研究所研究员,主要研究方向为密码理论与技术、安全协议
    耿魁(1989- ),男,湖北红安人,博士,中国科学院信息工程研究所高级工程师、硕士生导师,主要研究方向为网络安全、信息保护
  • 基金资助:
    国家重点研发计划基金资助项目(2018YFB0803903);陕西省重点研发计划基金资助项目(2019ZDLGY12-09)

On-demand and efficient scheduling scheme for cryptographic service resource

Wenlong KOU1,2, Yuyang ZHANG1, Fenghua LI1,2,3, Xiaogang CAO2,3, Jiamin LI1, Zhu WANG2,3, Kui GENG2   

  1. 1 School of Cyber Engineering, Xidian University, Xi’an 710071, China
    2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
    3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
  • Revised:2022-03-12 Online:2022-06-01 Published:2022-06-01
  • Supported by:
    The National Key Research and Development Program of China(2018YFB0803903);The Key Research and Development Program of Shannxi Province(2019ZDLGY12-09)

摘要:

目的:网络技术的普及使得越来越多的企业和个人加入到互联网的浪潮中,数据呈现出爆炸式的指数级增长趋势。数据安全传输和细粒度认证需求的日益增长,各类应用对密码服务的使用愈发频繁,如何处理随机交叉且峰值差异大的密码服务请求逐渐成为制约各种网络安全应用的瓶颈问题。本文提出密码服务调度系统模型,探索密码服务资源的差异化动态按需调度。

方法:利用优化熵值法和密码资源重构技术,为接入服务体系的用户和设备提供动态可扩展的密码服务资源。首先,提出密码设备服务能力评价方法,通过获取密码设备的密码资源使用率、网络吞吐率等运行状态信息,采用优化熵值法对数据进行处理,结合密码设备的密码资源配置,对密码设备提供的密码服务能力进行描述,为密码作业调度提供支撑。进而,提出了按需高效的密码作业调度策略,提出密码服务请求期望,通过计算密码设备的负载距离来判断是否满足密码服务需求,以此来生成密码作业调度策略。此外,还可以根据调度算法需要对密码设备进行重构,适应密码服务在服务质量、服务效率等方面的差异化需求。

结果:实验采用增强型负载均衡Min-Min算法、动态一致性哈希的集群负载均衡算法和本文所提调度算法作对比,通过发送密码服务请求的方式,分别测试3种调度算法的密码作业最大完成时间、单位时间可服务请求数量和现场可编程门阵列(FPGA,field programmable gate array)密码计算单元平均负载。从图7中可以看出,在密码服务请求数量较少时,3种调度算法的差异不太明显,但是随着密码服务请求数量的增加,FPGA计算单元的负载逐渐增大,另外两种调度算法由于不考虑密码作业迁移和FPGA计算单元动态配置,密码作业排队时间增加显著,与本文调度算法的差距越来越大。从图8中可以看出,在密码服务请求数量较少时,3种调度算法的差异不太明显,都能够满足大部分的密码服务请求,但是随着密码服务请求数量的增加,3种调度算法的单位时间可服务请求数量均达到峰值,由于本文调度算法实现了密码作业迁移和FPGA计算单元动态配置,使单位时间可服务请求数量要高于另外两种调度算法。从图9中可以看出,本文调度算法在尽量减少密码作业迁移和FPGA计算单元重构的前提下,将密码作业优先调度到同一个FPGA计算单元,因此在密码服务请求数量较少时只有一个FPGA计算单元有负载,并且随着密码服务请求数量的增加,同时工作的FPGA计算单元数量也随之增加。从图10~图11中可以看出,其他2种算法的FPGA负载相对比较均衡,在密码服务请求数量较大的情况下,每个FPGA的负载均较高,当新的密码服务请求到来时,由于不考虑密码作业迁移和FPGA计算单元动态配置,FPGA计算单元剩余计算能力不足以满足密码服务需求。

结论:本文提出了一种高效的密码服务资源按需调度方案。通过使用基于优化熵值法的密码设备归一化评价模型实现对密码服务能力的描述和动态监测;同时,提出适用不同需求的密码作业调度策略,并结合密码资源重构策略,实现对密码资源的差异化配置与调度;实现了将动态可扩展的密码服务资源提供给任何接入服务体系的用户和设备。

关键词: 密码资源, 按需调度, 高吞吐量, 评价模型

Abstract:

Objective: The popularity of network technology makes more and more enterprises and individuals join the wave of the Internet, and data presents an explosive exponential growth trend.With the increasing demand for data security transmission and fine-grained authentication, the use of cryptographic services in various applications is becoming more frequent. How to deal with random cross and large peak difference cryptographic service requests has gradually become a bottleneck problem restricting various network security applications.A model of cryptographic service scheduling system is proposed to explore the differential dynamic on-demand scheduling of cryptographic service resources.

Methods: Optimized entropy method and cryptographic resource reconstruction technology were used to provide dynamic and extensible cryptographic service resources for users and devices accessing service system. Firstly, the evaluation method of cryptographic device service ability is proposed. By obtaining the operating state information such as the utilization rate of cryptographic resources and network throughput of cryptographic devices,the optimized entropy method is used to process the data. Combined with the cryptographic resource allocation of cryptographic devices, the cryptographic service ability provided by cryptographic devices is described,which provides support for cryptographic job scheduling.Then, an efficient on-demand cryptographic job scheduling strategy is proposed, and the cryptographic service request expectation is proposed. By calculating the load distance of the cryptographic device to determine whether to meet the requirements of the cryptographic service, the cryptographic job scheduling strategy is generated. In addition,the cryptographic devices can be reconstructed according to the scheduling algorithm to meet the differentiated needs of cryptographic services in terms of service quality and service efficiency.

Results:The enhanced Min-Min load balancing algorithm,the cluster load balancing algorithm based on dynamic consistent hashing and the proposed on-demand scheduling algorithm are used for comparison. By sending cryptographic service requests, the maximum completion time of cryptographic operations, the number of serviceable requests per unit time and the average load of FPGA(field programmable gate array)cryptographic computing unit of the three scheduling algorithms are tested respectively.Fig.7 shows that when the number of cryptographic service requests is small,the difference among the three scheduling algorithms is not obvious.However, with the increase of the number of cryptographic service requests,the load of FPGA computing unit gradually increases. The other two scheduling algorithms do not consider the migration of cryptographic jobs and the dynamic configuration of FPGA computing unit, and the queuing time of cryptographic jobs increases significantly, and the gap between the other two scheduling algorithms and the on-demand scheduling algorithm is getting bigger and bigger.Fig.8 shows that when the number of cryptographic service requests is small, the difference of the three scheduling algorithms is not obvious,which can meet most of the cryptographic service requests. However, with the increase of the number of cryptographic service requests, the number of service requests per unit time of the three scheduling algorithms reaches the peak.Because the on-demand scheduling algorithm realizes the cryptographic job migration and the dynamic configuration of FPGA computing units, the number of service requests per unit time is higher than the other two scheduling algorithms.Fig. 9 shows that under the premise of minimizing the migration of cryptographic operations and the reconstruction of FPGA computing units, the on-demand scheduling algorithm prioritizes the cryptographic operations to the same FPGA computing unit.Therefore,only one FPGA computing unit has load when the number of cryptographic service requests is small, and with the increase of the number of cryptographic service requests, the number of FPGA computing units working also increases. Figs. 10 – 11 show that the FPGA load of the other two algorithms is relatively balanced.When the number of cryptographic service requests is large, the load of each FPGA is high.When the new cryptographic service request arrives,the residual calculation ability of FPGA calculation unit is insufficient to meet the cryptographic service demand because the migration of cryptographic jobs and the dynamic configuration of FPGA calculation unit are not considered.

Conclusions: An efficient on-demand scheduling scheme for cryptographic service resources is proposed. The description and dynamic monitoring of cryptographic service capability are realized by using the normalized evaluation model of cryptographic devices based on optimized entropy method. At the same time, a cryptographic job scheduling strategy suitable for different requirements is proposed, and combined with the cryptographic resource reconstruction strategy,the differential configuration and scheduling of cryptographic resources are realized. The dynamic and extensible cryptographic service resources are provided to users and devices of any access service system.

Key words: cryptographic resource, demand-based resource scheduling, high throughput, evaluation model

中图分类号: 

No Suggested Reading articles found!