通信学报 ›› 2022, Vol. 43 ›› Issue (12): 101-112.doi: 10.11959/j.issn.1000-436x.2022232

• 学术论文 • 上一篇    下一篇

基于激励相容的权益分散共识算法

田有亮1,2,3,4, 袁延森1,2,3,4, 高鸿峰2,3,4, 杨旸5, 熊金波6   

  1. 1 贵州大学公共大数据国家重点实验室,贵州 贵阳 550025
    2 贵州大学计算机科学与技术学院,贵州 贵阳 550025
    3 贵州大学密码学与数据安全研究所,贵州 贵阳 550025
    4 贵州省密码学与区块链技术特色重点实验室,贵州 贵阳 550025
    5 新加坡管理大学计算机与信息系统学院,新加坡 188065
    6 福建师范大学计算机与网络空间安全学院,福建 福州 350117
  • 修回日期:2022-11-08 出版日期:2022-12-25 发布日期:2022-12-01
  • 作者简介:田有亮(1982– ),男,贵州盘县人,博士,贵州大学教授、博士生导师,主要研究方向为算法博弈论、密码学与安全协议、大数据安全与隐私保护等
    袁延森(1998– ),男,河南南阳人,贵州大学硕士生,主要研究方向为区块链技术、共识算法等
    高鸿峰(1975- ),男,贵州遵义人,贵州大学副教授、硕士生导师,主要研究方向为网络与信息安全
    杨旸(1984- ),女,湖北随州人,新加坡管理大学在站博士后,福州大学教授、博士生导师,主要研究方向为区块链、密文搜索、大数据安全等
    熊金波(1981- ),男,湖南益阳人,博士,福建师范大学教授、博士生导师,主要研究方向为大数据安全与隐私保护、区块链技术、安全深度学习
  • 基金资助:
    国家重点研发计划基金资助项目(2021YFB3101100);国家自然科学基金联合基金重点资助项目(U1836205);贵州省高层次创新型人才项目([2020]6008);贵阳市科技计划基金资助项目([2021]1-5);贵阳市科技计划基金资助项目([2022]2-4);贵州省科技计划基金资助项目([2020]5017);贵州省科技计划基金资助项目([2022]065)

Equity decentralized consensus algorithm based on incentive compatibility

Youliang TIAN1,2,3,4, Yansen YUAN1,2,3,4, Hongfeng GAO2,3,4, Yang YANG5, Jinbo XIONG6   

  1. 1 State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
    2 College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
    3 Institute of Cryptography &Date Security, Guizhou University, Guiyang 550025, China
    4 Guizhou Province Key Laboratory of Cryptography and Block Chain Technology, Guizhou University, Guiyang 550025, China
    5 School of Computing and Information Systems, Singapore Management University, Singapore 188065, Singapore
    6 College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China
  • Revised:2022-11-08 Online:2022-12-25 Published:2022-12-01
  • Supported by:
    The National Key Research and Development Program of China(2021YFB3101100);Key Program of the National Natural Science Union Foundation of China(U1836205);Project of High-level Innovative Talents of Guizhou Province([2020]6008);Science and Technology Program of Guiyang([2021]1-5);Science and Technology Program of Guiyang([2022]2-4);Science and Technology Program of Guizhou Province([2020]5017);Science and Technology Program of Guizhou Province([2022]065)

摘要:

PoW共识算法被证明是激励不相容的,存在高奖励差异下的算力中心化和极端情况下的分叉收敛速度较慢等问题。基于此,提出了一种基于激励相容的 SSPoW 共识算法。通过引入局部解来计算区块链的聚合算力,利用算力的显性量化加快分叉收敛速度,从而满足区块链的一致性。通过改进奖励方案实现激励相容,减少因高奖励差异导致的算力中心化问题。仿真结果证明,所提算法能有效削减奖励差异,并且效率高于传统 PoW 共识算法,对提高系统安全性和共识效率有积极意义。

关键词: 共识算法, 合作挖矿, 分叉收敛, 奖励方案

Abstract:

The PoW consensus algorithm has been proved to be incentive incompatible, existing computing centralization under high reward differences and slow convergence of forks in extreme cases.Based on this, an incentive-compatiblebased consensus algorithm SSPoW was proposed.By introducing local solutions to calculate the computing power aggregated on the block chain, the explicit quantification of computing power was used to speed up the convergence of the fork, thus satisfying the consistency of the blockchain.Incentive compatibility was achieved by improving the reward scheme, which reduced the problem of computing centralization caused by high reward differences.Simulation results prove that the proposed algorithm could effectively reduce the reward differences and is more efficient than the traditional PoW consensus algorithm, which has positive implications for improving system security and consensus efficiency.

Key words: consensus algorithm, cooperative mining, fork convergence, rewarding scheme

中图分类号: 

No Suggested Reading articles found!