通信学报 ›› 2023, Vol. 44 ›› Issue (3): 209-219.doi: 10.11959/j.issn.1000-436x.2023061

• 学术通信 • 上一篇    下一篇

联合低秩重构和投影重构的稳健特征选择方法

仪双燕1, 梁永生2, 陆晶晶3, 柳伟4, 胡涛5, 何震宇6   

  1. 1 深圳信息职业技术学院软件学院,广东 深圳 518000
    2 哈尔滨工业大学(深圳)电子与信息工程学院,广东 深圳 518000
    3 深圳国微福芯技术有限公司,广东 深圳 518000
    4 深圳信息职业技术学院计算机学院,广东 深圳 518000
    5 深圳信息职业技术学院信息技术研究所,广东 深圳 518000
    6 哈尔滨工业大学(深圳)计算机科学与技术学院,广东 深圳 518000
  • 修回日期:2023-02-02 出版日期:2023-03-25 发布日期:2023-03-01
  • 作者简介:仪双燕(1987- ),女,山东菏泽人,博士,深圳信息职业技术学院讲师,主要研究方向为模式识别、机器学习
    梁永生(1971- ),男,黑龙江肇东人,博士,哈尔滨工业大学教授,主要研究方向为通信信源、信道、网络协同优化编码
    陆晶晶(1996- ),女,广西南宁人,深圳国微福芯技术有限公司工程师,主要研究方向为模式识别
    柳伟(1973- ),男,湖南长沙人,博士,深圳信息职业技术学院教授,主要研究方向为人工智能、视觉媒体处理
    胡涛(1979- ),男,湖北黄冈人,博士,深圳信息职业技术学院高级工程师,主要研究方向为图像处理、机器视觉等
    何震宇(1978- ),男,江西抚州人,博士,哈尔滨工业大学(深圳)教授、博士生导师,主要研究方向为人工智能、计算机视觉等
  • 基金资助:
    国家自然科学基金资助项目(61906124);国家自然科学基金资助项目(62031013);中国博士后科学基金资助项目(2018M630158);广东省自然科学基金资助项目(2022A1515011447)

Robust feature selection method via joint low-rank reconstruction and projection reconstruction

Shuangyan YI1, Yongsheng LIANG2, Jingjing LU3, Wei LIU4, Tao HU5, Zhenyu HE6   

  1. 1 School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518000, China
    2 School of Electronics and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
    3 Shenzhen Guowei Fuxin Technology Co., Ltd,Shenzhen 518000, China
    4 School of Computer Sciences, Shenzhen Institute of Information Technology, Shenzhen 518000, China
    5 Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518000, China
    6 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
  • Revised:2023-02-02 Online:2023-03-25 Published:2023-03-01
  • Supported by:
    The National Natural Science Foundation of China(61906124);The National Natural Science Foundation of China(62031013);The Chinese Postdoctoral Science Foundation(2018M630158);Guangdong Natural Science Foundation(2022A1515011447)

摘要:

针对当前特征选择方法依然受噪声影响以及无法将聚类效果和重构效果有效统一的问题,提出了一种稳健的特征选择方法。从干净数据和重构数据作差的思路着手,将低秩重构数据和投影重构数据作差构建稳健的重构误差项,并提出从学习到的干净数据上选择特征用于聚类。将干净数据的学习和特征选择技能进行联合学习,相互促进,从而提升方法在有噪数据上的稳健性,并且将重构效果和聚类效果进行有效统一。在5个数据集上与几种图嵌入角度的特征选择以及PCA重构角度的特征选择方法进行聚类实验对比,实验结果表明,除LUNG噪声数据集外,所提方法在2种评价指标(ACC和NMI)下都优于对比特征选择方法。

关键词: 重构, 低秩, 投影, 稀疏, 特征选择

Abstract:

Aiming at the problem that current feature selection methods were still affected by noise and cannot effectively unify clustering and reconstruction effects, a robust feature selection method was proposed.A robust reconstruction error term was built by making the difference between low-rank reconstruction and projection reconstruction.After that, the features for clustering were selected from the reconstructed data instead of the original data.The learning of clean data and feature selection technique are allowed for joint learning and promote each other, thereby improving the robustness of the method on noisy data, and effectively unifying reconstruction and clustering.Compared with several kinds of graph embedding feature selection and reconstruction feature selection methods on five datasets, the experimental results showed that, except for the LUNG noise dataset, the proposed method outperforms the comparative feature selection method under both evaluation indicators (ACC and NMI).

Key words: reconstruction, low-rank, projection, sparsity, feature selection

中图分类号: 

No Suggested Reading articles found!