[1] |
JENNIFER G D , BRODLEY C E . Feature selection for unsupervised learning[J]. Journal of Machine Learning Research, 2004,5: 845-889.
|
[2] |
HE X F , CAI D , PARTHA N . Laplacian score for feature selection[C]// Advances in Neural Information Processing Systems. Massachusetts:MIT Press, 2006: 507-514.
|
[3] |
ZHAO Z , LIU H . Spectral feature selection for supervised and unsupervised learning[C]// Proceedings of the 24th International Conference on Machine Learning. New York:ACM Press, 2007: 1151-1157.
|
[4] |
NIE F P , XIANG S M , JIA Y Q ,et al. Trace ratio criterion for feature selection[C]// Proceedings of the 23rd National Conference on Artificial Intelligence. New York:ACM Press, 2008: 671-676.
|
[5] |
ZHAO Z , WANG L , LIU H . Efficient spectral feature selection with minimum redundancy[C]// Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. New York:ACM Press, 2010: 673-678.
|
[6] |
LI Z C , YANG Y , LIU J ,et al. Unsupervised feature selection using nonnegative spectral analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,26(1): 1026-1032.
|
[7] |
ZHU P F , ZUO W M , ZHANG L ,et al. Unsupervised feature selection by regularized self-representation[J]. Pattern Recognition, 2015,48(2): 438-446.
|
[8] |
LEI C , ZHU X F . Unsupervised feature selection via local structure learning and sparse learning[J]. Multimedia Tools and Applications, 2018,77(22): 29605-29622.
|
[9] |
ARGYRIOU A , EVGENIOU T , PONTIL M . Convex multi-task feature learning[J]. Machine Learning, 2008,73(3): 243-272.
|
[10] |
刘文慧 . PCA与PLS用于高维数据分类的比较性研究[C]// 2011年中国卫生统计学年会论文集.[S.l.:s.n.], 2011: 422-424.
|
|
LIU W H , . Comparative study of PCA and PLS for high-dimensional data classification[C]// Proceedings of the 2011 China Annual Conference of Health Statistics.[S.l.:s.n.], 2011: 422-424.
|
[11] |
WANG F , ZHU L , LI J ,et al. Unsupervised soft-label feature selection[J]. Knowledge-Based Systems, 2021:doi.osrg/10.1016/j.knosys.2021.106847.
|
[12] |
CAI D , ZHANG C Y , HE X F . Unsupervised feature selection for multi-cluster data[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2010: 25-28.
|
[13] |
YANG Y , SHEN H T , MA Z G ,et al. l2,1-norm regularized discriminative feature selection for unsupervised learning[C]// Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. New York:ACM Press, 2011: 1589-1594.
|
[14] |
SHI Y , MIAO J Y , WANG Z Y ,et al. Feature selection with l2,1-2regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(10): 4967-4982.
|
[15] |
QIAN M , ZHAI C . Robust unsupervised feature selection[C]// Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. New York:ACM Press, 2013: 1621-1627.
|
[16] |
SHI L , DU L , SHEN Y D . Robust spectral learning for unsupervised feature selection[C]// Proceedings of 2014 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2015: 977-982.
|
[17] |
NIE F P , ZHU W , LI X L . Unsupervised feature selection with structured graph optimization[C]// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. New York:ACM Press, 2016: 1302-1308.
|
[18] |
CHEN H , NIE F P , WANG R ,et al. Unsupervised feature selection with flexible optimal graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022:doi.org/10.1109/TNNLS.2022.3186171.
|
[19] |
TURK M A , PENTLAND A P . Face recognition using eigenfaces[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 1991: 586-591.
|
[20] |
ZOU H , HASTIE T , TIBSHIRANI R . Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006,15(2): 265-286.
|
[21] |
SEGHOUANE A K , SHOKOUHI N , KOCH I . Sparse principal component analysis with preserved sparsity pattern[J]. IEEE Transactions on Image Processing, 2019,28(7): 3274-3285.
|
[22] |
YI S Y , HE Z Y , JING X Y ,et al. Adaptive weighted sparse principal component analysis for robust unsupervised feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(6): 2153-2163.
|
[23] |
CANDES E J , LI X , MA Y . Robust principal component analysis?[J]. Journal of the ACM, 2011,58(3): 1-39.
|
[24] |
WRIGHT J , PENG Y , MA Y ,et al. Robust principal component analysis:exact recovery of corrupted low-rank matrices via convex optimization[C]// Proceedings of Neural Information Processing Systems. Massachusetts:MIT Press, 2009: 1-9.
|
[25] |
LIU G C , LIN Z C , YU Y . Robust subspace segmentation by low-rank representation[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning. New York:ACM Press, 2010: 663-670.
|
[26] |
LIU G C , LIN Z C , YAN S C ,et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1): 171-184.
|
[27] |
SHAHID N , KALOFOLIAS V , BRESSON X ,et al. Robust principal component analysis on graphs[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2016: 2812-2820.
|
[28] |
NIE F P , YUAN J J , HUANG H . Optimal mean robust principal component analysis[C]// Proceedings of the 31st International Conference on International Conference on Machine Learning. New York:ACM Press, 2014: 1062-1070.
|
[29] |
SHI X S , NIE F P , LAI Z H ,et al. Robust principal component analysis via optimal mean by joint l2,1and Schatten p-norms minimization[J]. Neurocomputing, 2018,283: 205-213.
|
[30] |
LUO M N , NIE F P , CHANG X J ,et al. Avoiding optimal mean l2,1-norm maximization-based robust PCA for reconstruction[J]. Neural Computation, 2017,29(4): 1124-1150.
|
[31] |
LUO M N , NIE F P , CHANG X J ,et al. Avoiding optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York:ACM Press, 2016: 1802-1808.
|
[32] |
LIAO S L , LI J , LIU Y ,et al. Robust formulation for PCA:avoiding mean calculation with l2,p-norm maximization[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2018: 3604-3610.
|
[33] |
NIE F P , TIAN L , HUANG H ,et al. Non-greedy l21-norm maximization for principal component analysis[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2021,30: 5277-5286.
|
[34] |
WANG Q Q , GAO Q X , GAO X B ,et al. l2,p-norm based PCA for image recognition[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2018,27(3): 1336-1346.
|
[35] |
NIE F P , WU D Y , WANG R ,et al. Truncated robust principle component analysis with a general optimization framework[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(2): 1081-1097.
|
[36] |
QW A , QXG A , GAN S B ,et al. Double robust principal component analysis[J]. Neurocomputing, 2020,391: 119-128.
|
[37] |
NENE S A , NAYAR S K , MURASE H ,et al. Columbia object image library[R]. 1996.
|
[38] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324.
|
[39] |
HULL J J . A database for handwritten text recognition research[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(5): 550-554.
|
[40] |
SINGH D , FEBBO P G , ROSS K ,et al. Gene expression correlates of clinical prostate cancer behavior[J]. Cancer Cell, 2002,1(2): 203-209.
|
[41] |
WANG R , BIAN J T , NIE F P ,et al. Unsupervised discriminative projection for feature selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(2): 942-953.
|
[42] |
HU H J , WANG R , NIE F P ,et al. Fast unsupervised feature selection with anchor graph and l2,1-norm regularization[J]. Multimedia Tools and Applications, 2018,77(17): 22099-22113.
|