[1] |
赵亚军, 郁光辉, 徐汉青 . 6G移动通信网络,愿景、挑战与关键技术[J]. 中国科学,信息科学, 2019,49(8): 963-987.
|
|
ZHAO Y J , YU G H , XU H Q . 6G mobile communication networks:vision,challenges,and key technologies[J]. Scientia Sinica (Informationis), 2019,49(8): 963-987.
|
[2] |
CHOWDHURYMZ , SHAHJALAL M , AHMEDS ,et al. 6G wireless communication systems,applications,requirements,technologies,challenges,and research directions[J]. IEEE Open Journal of the Communications Society, 1: 957-975.
|
[3] |
YANG P , XIAO Y,XIAOM ,et al. 6G wireless communications,vision and potential techniques[J]. IEEE Network, 2019,33(4): 70-75.
|
[4] |
CHI N , ZHOU Y J , WEI Y R ,et al. Visible light communication in 6G:advances,challenges,and prospects[J]. IEEE Vehicular Technology Magazine, 2020,15(4): 93-102.
|
[5] |
CHEN C , ZHONG W D , YANG H L ,et al. On the performance of MIMO-NOMA-based visible light communication systems[J]. IEEE Photonics Technology Letters, 2018,30(4): 307-310.
|
[6] |
GUO X Y , CHI N . Superposed 32QAM constellation design for 2 × 2 spatial multiplexing MIMO VLC systems[J]. Journal of Lightwave Technology, 2020,38(7): 1702-1711.
|
[7] |
JI H , QIAO S , ZHANG T . A MISO-VLC system based on LACO-OFDM and superposed constellation demodulation[C]// Proceedings of 2019 9th International Conference on Information Science and Technology (ICIST). Piscataway,IEEE Press, 2019: 294-298.
|
[8] |
WANG W Y , ZHU Y J , ZHANG Y Y ,et al. An optimal power allocation for multi-LED phase-shifted-based MISO VLC systems[J]. IEEE Photonics Technology Letters, 2015,27(22): 2391-2394.
|
[9] |
YILMAZ A , ELAMASSIE M , UYSAL M . Diversity gain analysis of underwater vertical MIMO VLC links in the presence of turbulence[C]// Proceedings of 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). Piscataway,IEEE Press, 2019: 1-6.
|
[10] |
AMANTAYEVA A , YERZHANOVA M , KIZILIRMAK R C . Multiuser MIMO for underwater visible light communication[C]// Proceedings of 2018 International Conference on Computing and Network Communications (CoCoNet). Piscataway,IEEE Press, 2018: 164-168.
|
[11] |
CHI N , ZHOU Y J , LIANG S Y ,et al. Enabling technologies for high-speed visible light communication employing CAP modulation[J]. Journal of Lightwave Technology, 2018,36(2): 510-518.
|
[12] |
ZHANG Z Y , LAI Y J , LV J L ,et al. Over 700 MHz-3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019,11(3): 1-12.
|
[13] |
WANG Y G , TAO L , HUANG X X ,et al. Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer[J]. IEEE Photonics Journal, 2015,7(3): 1-7.
|
[14] |
STEPNIAK G , SIUZDAK J , ZWIERKO P . Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE[J]. IEEE Photonics Technology Letters, 2013,25(16): 1597-1600.
|
[15] |
SCHüPPERT M , BUNGE C A . 5Gb/s eye-safe LED-based SI-POF transmission with equalization of transmitter nonlinearities[J]. IEEE Photonics Technology Letters, 2016,28(23): 2732-2735.
|
[16] |
MIAO P , YIN W B , PENG H ,et al. Deep learning based nonlinear equalization for DCO-OFDM systems[C]// Proceedings of 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology. Piscataway,IEEE Press, 2021: 699-703.
|
[17] |
LI X Y , GAO Q , GONG C ,et al. Nonlinearity mitigation for VLC with an artificial neural network based equalizer[C]// Proceedings of 2018 IEEE Globecom Workshops. Piscataway,IEEE Press, 2018: 1-6.
|
[18] |
HU F C , LI G Q , ZOU P ,et al. 20.09-gbit/s underwater WDM-VLC transmission based on a single Si/GaAs-substrate multichromatic LED array chip[C]// Proceedings of 2020 Optical Fiber Communications Conference and Exhibition (OFC). Piscataway,IEEE Press, 2020: 1-3.
|
[19] |
HAN S Q , WANG C F , LI G Q ,et al. A 427.5 mbit/s automotive headlight visible light communication system utilizing 64QAM-DMT modulation with software pre-equalization[C]// Proceedings of 2019 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway,IEEE Press, 2019: 169-172.
|
[20] |
BAMIEDAKIS N , PENTY R V , WHITE I H . Carrierless amplitude and phase modulation in wireless visible light communication systems[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences, 2020,378(2169): 20190181.
|
[21] |
ZOU P , ZHAO Y H , HU F C ,et al. Square geometrical shaping 128QAM based time domain hybrid modulation in visible light communication system[J]. China Communications, 2020,17(1): 163-173.
|
[22] |
AOUDIA F A , HOYDIS J . Joint learning of probabilistic and geometric shaping for coded modulation systems[C]// Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway,IEEE Press, 2020: 1-6.
|
[23] |
RASHIDI A , MONAVARIAN M , ARAGON A ,et al. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth[J]. IEEE Electron Device Letters, 2018,39(4): 520-523.
|
[24] |
WANG L , WEI Z X , CHEN C J ,et al. 13 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication[J]. Photonics Research, 2021,9(5): 792.
|
[25] |
XIE E Y , BIAN R , HE X Y ,et al. Over 10 gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array[J]. IEEE Photonics Technology Letters, 2020,32(9): 499-502.
|
[26] |
KIM J H , OLSON A , GOVINDASAMY S ,et al. An approach for tomlinson-harashima precoding in visible-light-communications systems[C]// Proceedings of 2018 International Conference on Computer,Information and Telecommunication Systems (CITS). Piscataway:IEEE Press, 2018: 1-5.
|
[27] |
QIAN H , CHEN J , YAO S J ,et al. One-bit sigma-delta modulator for nonlinear visible light communication systems[J]. IEEE Photonics Technology Letters, 2015,27(4): 419-422.
|
[28] |
NIU W Q , CHEN H , ZHANG J W ,et al. Nonlinearity mitigation based on modulus pruned look-up table for multi-bit delta-sigma 32-CAP modulation in underwater visible light communication system[J]. IEEE Photonics Journal, 2021,13(1): 1-12.
|
[29] |
YAMAMOTO S , MASUDA A , TANIGUCHI H ,et al. 92-Gbaud PAM4 transmission using spectral-shaping trellis-coded-modulation with 20 GHz bandwidth limitation[C]// Proceedings of Optical FiberCommunication Conference (OFC) 2019.Washington, D.C.,OSA, 2019.
|
[30] |
YAMAMOTO S , TANIGUCHI H , MATSUSHITA A ,et al. Spectral-shaping technique based on nonlinear-coded-modulation for short-reach optical transmission[J]. Journal of Lightwave Technology, 2020,38(2): 466-474.
|